login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..floor(n/2)} Stirling2(n-k,k) * 2^k.
7

%I #18 May 17 2023 18:09:44

%S 1,0,2,2,6,14,38,110,342,1134,3990,14830,58006,237998,1021462,4574318,

%T 21325462,103287598,518768406,2697426926,14498316182,80440333998,

%U 460112203798,2710038058862,16418576767126,102212840258094,653247225514262,4282249051881198

%N a(n) = Sum_{k=0..floor(n/2)} Stirling2(n-k,k) * 2^k.

%H Seiichi Manyama, <a href="/A097341/b097341.txt">Table of n, a(n) for n = 0..654</a>

%F a(n)=sum{k=0..floor(n/2), sum{i=0..k, (-1)^(k+i)i^(n-k)/(i!(k-i)!)}2^k }

%F G.f.: Sum_{k>=0} 2^k * x^(2*k)/Product_{j=1..k} (1 - j * x). - _Seiichi Manyama_, Apr 09 2022

%o (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, 2^k*x^(2*k)/prod(j=1, k, 1-j*x))) \\ _Seiichi Manyama_, Apr 09 2022

%o (PARI) a(n) = sum(k=0, n\2, 2^k*stirling(n-k, k, 2)); \\ _Seiichi Manyama_, Apr 09 2022

%Y Cf. A024427, A097342, A119429, A119430, A171367.

%K easy,nonn

%O 0,3

%A _Paul Barry_, Aug 05 2004