login
A300863
Signed recurrence over enriched p-trees: a(n) = (-1)^(n - 1) + Sum_{y1 + ... + yk = n, y1 >= ... >= yk > 0, k > 1} a(y1) * ... * a(yk).
6
1, 0, 2, 2, 6, 14, 34, 82, 214, 566, 1482, 4058, 10950, 30406, 83786, 235714, 658286, 1874254, 5293674, 15189810, 43312542, 125075238, 359185586, 1043712922, 3015569582, 8800146182, 25565402802, 74918274562, 218572345718, 642783954238, 1882606578002
OFFSET
1,3
LINKS
FORMULA
O.g.f.: (-1/(1+x) + Product 1/(1-a(n)x^n))/2.
MATHEMATICA
a[n_]:=a[n]=(-1)^(n-1)+Sum[Times@@a/@y, {y, Select[IntegerPartitions[n], Length[#]>1&]}];
Array[a, 40]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 13 2018
STATUS
approved