login
A024427
S(n,1) + S(n-1,2) + S(n-2,3) + ... + S(n+1-k,k), where k = floor((n+1)/2) and S(i,j) are Stirling numbers of the second kind.
9
1, 1, 2, 4, 9, 22, 58, 164, 495, 1587, 5379, 19195, 71872, 281571, 1151338, 4902687, 21696505, 99598840, 473466698, 2327173489, 11810472444, 61808852380, 333170844940, 1847741027555, 10532499571707, 61649191750137, 370208647200165, 2278936037262610
OFFSET
1,3
COMMENTS
a(n) is the number of ways to partition {1,2,...,n+1} into any number of blocks such that each block has at least 2 elements and the smallest 2 elements in each block are consecutive integers. - Geoffrey Critzer, Dec 02 2013
LINKS
FORMULA
G.f.: Sum_{k>=0} x^(2*k) / Product_{l=1..k} (1-l*x). - Ralf Stephan, Apr 18 2004
a(n) = Sum_{i=0..n} stirling2(n+1-i, i). - Zerinvary Lajos, Jan 31 2008
G.f.: ((G(0) - 1)/(x-1)-x)/x^3 where G(k) = 1 - x/(1-k*x)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
G.f.: 1/x^2/Q(0) - 1/x^2 where Q(k) = 1 - x^2/(1 - x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Apr 14 2013
G.f.: T(0)/(x^2*(1-x^2)) - 1/x^2, where T(k) = 1 - (k+1)*x^3/((k+1)*x^3 - (1 - x^2 - x*k)*(1 - x - x^2 - x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 29 2013
G.f.: 1/(Q(0)-x^2), where Q(k) = 1 - x*(k+1)/( 1 - x^2/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2013
EXAMPLE
a(5) = 9 because we have: {1,2,3,4,5,6}; {1,2,3,4},{5,6}; {1,2,3},{4,5,6}; {1,2},{3,4,5,6}; {1,2,5,6},{3,4}; {1,2,5},{3,4,6}; {1,2,6},{3,4,5}; {1,2,3,6},{4,5}; {1,2},{3,4},{5,6}. - Geoffrey Critzer, Dec 02 2013
MAPLE
with(combinat): seq(add(stirling2(n+1-i, i), i=0..n), n=1..26); # Zerinvary Lajos, Jan 31 2008
MATHEMATICA
Table[Total[Table[StirlingS2[n - k + 1, k], {k, Floor[(n + 1)/2]}]], {n, 30}] (* T. D. Noe, Oct 29 2013 *)
PROG
(PARI) a(n) = sum(j=1, floor((n+1)/2), stirling(n+1-j, j, 2) ); /* Joerg Arndt, Apr 14 2013 */
CROSSREFS
Row sums of A136011.
Sequence in context: A059019 A249560 A121953 * A171367 A092920 A177377
KEYWORD
nonn
STATUS
approved