login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171367
Antidiagonal sums of triangle of Stirling numbers of 2nd kind A048993.
12
1, 0, 1, 1, 2, 4, 9, 22, 58, 164, 495, 1587, 5379, 19195, 71872, 281571, 1151338, 4902687, 21696505, 99598840, 473466698, 2327173489, 11810472444, 61808852380, 333170844940, 1847741027555, 10532499571707, 61649191750137, 370208647200165, 2278936037262610, 14369780182166215
OFFSET
0,5
LINKS
P. Flajolet, Combinatorial aspects of continued fractions, Discrete Mathematics, Volume 32, Issue 2, 1980, pp. 125-161.
FORMULA
G.f.: 1/(1-x^2/(1-x/(1-x^2/(1-2x/(1-x^2/1-3x/(1-x^2/(1-4x/(1-x^2/(1-5x/(1-... (continued fraction).
G.f.: (G(0) - 1)/(x-1)/x where G(k) = 1 - x/(1-k*x)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
G.f.: T(0)/(1-x^2), where T(k) = 1-x^3*(k+1)/(x^3*(k+1)-(1-x*(x+k))*(1-x*(x+1+k))/T(k+1) ); (continued fraction, after P. Flajolet, p. 140). - Sergei N. Gladkovskii, Oct 30 2013
G.f. (alternating signs): Sum_{k>=0} S(x,k)*x^k, where S(x,k)*exp(-x) is the inverse Mellin transform of Gamma(s)*s^k. - Benedict W. J. Irwin, Oct 14 2016
MAPLE
b:= proc(n, m) option remember; `if`(n<=m,
`if`(n=m, 1, 0), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..30); # Alois P. Heinz, May 16 2023
MATHEMATICA
Table[Sum[StirlingS2[n-k, k], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 18 2016 *)
PROG
(Maxima) makelist(sum(stirling2(n-k, k), k, 0, n), n, 0, 60); [Emanuele Munarini, Jun 01 2012]
(PARI) a(n) = sum(k=0, n, stirling(n-k, k, 2)); /* Joerg Arndt, Jan 16 2013 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Dec 06 2009
STATUS
approved