login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097343
Triangle read by rows in which row n gives Legendre symbol (k,p) for 0<k<=p where p = n-th prime.
6
1, -1, 0, 1, -1, -1, 1, 0, 1, 1, -1, 1, -1, -1, 0, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 0, 1, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 0, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 0, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 0, 1, 1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 0, 1, -1, -1, 1, 1, 1, 1
OFFSET
2,1
COMMENTS
Row sums = 0. (p,k)==k^((p-1)/2) (mod p). For example, row n=4 of the triangle (for the 4th prime p = 7) reads: 1,1,-1,1,-1,-1,0 because 1^3==1, 2^3==1, 3^3==-1, 4^3==1, 5^3==-1, 6^3==-1, 7^3==0 (mod 7). - Geoffrey Critzer, Apr 18 2015
LINKS
Haskell for Math, Number Theory Fundamentals
Wikipedia, Legendre symbol
FORMULA
(p, p)=0, all others are +- 1.
EXAMPLE
1,-1,0 ; # A102283
1,-1,-1,1,0; # A080891
1,1,-1,1,-1,-1,0; # A175629
1,-1,1,1,1,-1,-1,-1,1,-1,0; # A011582
MAPLE
with(numtheory):
T:= n-> (p-> seq(jacobi(k, p), k=1..p))(ithprime(n)):
seq(T(n), n=2..15); # Alois P. Heinz, Apr 19 2015
MATHEMATICA
Flatten[ Table[ JacobiSymbol[ Range[ Prime[n]], Prime[n]], {n, 2, 8}]]
PROG
(Haskell)
a097343 n k = a097343_tabf !! (n-2) !! (k-1)
a097343_row n = a097343_tabf !! (n-2)
a097343_tabf =
map (\p -> map (flip legendreSymbol p) [1..p]) $ tail a000040_list
legendreSymbol a p = if a' == 0 then 0 else twoSymbol * oddSymbol where
a' = a `mod` p
(s, q) = a' `splitWith` 2
twoSymbol = if (p `mod` 8) `elem` [1, 7] || even s then 1 else -1
oddSymbol = if q == 1 then 1 else qrMultiplier * legendreSymbol p q
qrMultiplier = if p `mod` 4 == 3 && q `mod` 4 == 3 then -1 else 1
splitWith n p = spw 0 n where
spw s t = if m > 0 then (s, t) else spw (s + 1) t'
where (t', m) = divMod t p
-- See link. Reinhard Zumkeller, Feb 02 2014
CROSSREFS
See A226520 for another version.
Cf. A068717.
Sequence in context: A138019 A179850 A267919 * A188011 A040051 A108788
KEYWORD
sign,tabf
AUTHOR
Robert G. Wilson v, Aug 02 2004
STATUS
approved