The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A068717 a(n) = -1 if A067280(n) = 0 mod 2, otherwise a(n) = A049240(n). 3
 0, -1, 1, 0, -1, 1, 1, 1, 0, -1, 1, 1, -1, 1, 1, 0, -1, 1, 1, 1, 1, 1, 1, 1, 0, -1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 0, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 0, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 0, -1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 0, -1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Previous name was: x*x - n*y*y = +-1 has infinitely many solutions in integers (x,y). REFERENCES H. Davenport, The Higher Arithmetic. Cambridge Univ. Press, 7th ed., 1999, table 1. LINKS John Robertson, Solving the generalized Pell equation x^2-dy^2=N. FORMULA a(n) = -1 if A067280(n) = 0 mod 2, otherwise a(n) = A049240(n). EXAMPLE a(2)= -1: x*x -2*y*y = -1 is soluble, e.g. 7*7 -2*5*5 = -1. CROSSREFS Cf. A068716, A068718, A067280, A049240, A006702, A006703. Sequence in context: A332814 A285418 A344617 * A049240 A285978 A138712 Adjacent sequences:  A068714 A068715 A068716 * A068718 A068719 A068720 KEYWORD sign,easy AUTHOR Frank Ellermann, Feb 25 2002 EXTENSIONS New name from formula by Joerg Arndt, Aug 29 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 16:17 EDT 2021. Contains 347658 sequences. (Running on oeis4.)