login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179850
Characteristic function of numbers that are congruent to {0, 1, 3, 4} mod 5.
1
1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1
OFFSET
0,1
COMMENTS
a(n) is also the characteristic sequence for the mod m reduced odd numbers (i.e., gcd(2*n+1,m)=1, n>=0) for each modulus m from 5*A003592 = [5, 10, 20, 25, 40, 50, 80, 100, 125,...]. [Wolfdieter Lang, Feb 04 2012]
FORMULA
a(n) = b(2*n + 1) where b(n) is completely multiplicative with b(2) = b(5) = 0, otherwise b(p) = 1.
Coefficient of q^(2*n + 1) in q * (1 - q^4) * (1 - q^12) / ((1 - q^2) * (1 - q^6) * (1 - q^10)).
Euler transform of length 6 sequence [1, -1, 1, 0, 1, -1].
G.f.: (1 + x) * (1 + x^3) / (1 - x^5).
a(n) = a(-n) = a(n + 5) = A011558(n + 3) for all n in Z.
Period 5 sequence [1, 1, 0, 1, 1, ...].
a(n) = A130782(n) mod 2. - Antti Karttunen, Aug 31 2017
EXAMPLE
G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^8 + x^9 + x^10 + x^11 + x^13 + ...
G.f. = q + q^3 + q^7 + q^9 + q^11 + q^13 + q^17 + q^19 + q^21 + q^23 + ...
MATHEMATICA
a[ n_] := Sign @ Mod[n - 2, 5]; (* Michael Somos, Jun 17 2015 *)
a[ n_] := {1, 0, 1, 1, 1}[[Mod[n, 5, 1]]]; (* Michael Somos, Jun 17 2015 *)
PROG
(PARI) {a(n) = sign( (n - 2) % 5 )};
(PARI) {a(n) = [1, 1, 0, 1, 1][n%5 + 1]};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 10 2011
STATUS
approved