login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105368
Expansion of (1-x-x^3+x^4)/(1-x^5).
4
1, -1, 0, -1, 1, 1, -1, 0, -1, 1, 1, -1, 0, -1, 1, 1, -1, 0, -1, 1, 1, -1, 0, -1, 1, 1, -1, 0, -1, 1, 1, -1, 0, -1, 1, 1, -1, 0, -1, 1, 1, -1, 0, -1, 1, 1, -1, 0, -1, 1, 1, -1, 0, -1, 1, 1, -1, 0, -1, 1, 1, -1, 0, -1, 1, 1, -1, 0, -1, 1, 1, -1, 0, -1, 1, 1, -1, 0, -1, 1, 1
OFFSET
0,1
COMMENTS
Period 5: repeat [1,-1,0,-1,1]. Partial sums are A105367.
Binomial transform of A105369. - R. J. Mathar, Jul 29 2010
FORMULA
G.f.: (1-x)*(1-x^3)/(1-x^5).
a(n) = A105367(n)-A105367(n-1).
a(n) = (1/2-sqrt(5)/10)*cos(4*Pi*n/5)-sqrt(1/2+sqrt(5)/10)*sin(4*Pi*n/5)+(1/2+sqrt(5)/10)*cos(2*Pi*n/5)-sqrt(1/2-sqrt(5)/10)*sin(2*Pi*n/5).
From R. J. Mathar, Jul 29 2010: (Start)
a(n) = -a(n-1) -a(n-2) -a(n-3) -a(n-4), n>4.
G.f.: (1-x)*(1+x+x^2)/(1+x+x^2+x^3+x^4). (End)
a(n) = -sign( (n+3) mod 5)*(-1)^floor(-2n/5-4/5). - Wesley Ivan Hurt, Apr 28 2015
a(n) = 2 - ( (n^2+n+1) mod 5 ). - Wesley Ivan Hurt, May 31 2015
Euler transform of length 5 sequence [ -1, 0, -1, 0, 1]. - Michael Somos, Jun 16 2015
a(n) = a(-1-n) for all n in Z. - Michael Somos, Jun 16 2015
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = b(5^e) = 0^e, b(p^e) = 1 if p == 1, 9 (mod 10), b(p^e) = (-1)^e if p == 3, 7 (mod 10). - Michael Somos, Jun 16 2015
EXAMPLE
G.f. = 1 - x - x^3 + x^4 + x^5 - x^6 - x^8 + x^9 + x^10 - x^11 - x^13 + ...
G.f. = q - q^3 - q^7 + q^9 + q^11 - q^13 - q^17 + q^19 + q^21 - q^23 + ...
MAPLE
A105368:=n->2-(n^2+n-4 mod 5): seq(A105368(n), n=0..100);
MATHEMATICA
CoefficientList[Series[(1 - x - x^3 + x^4)/(1 - x^5), {x, 0, 100}], x] (* Vincenzo Librandi, Apr 29 2015 *)
a[ n_] := {-1, 0, -1, 1, 1}[[Mod[n, 5, 1]]]; (* Michael Somos, Jun 16 2015 *)
PROG
(Magma) &cat [[1, -1, 0, -1, 1]: n in [1..20]]; // Vincenzo Librandi, Apr 29 2015
(Magma) I:=[1, -1, 0, -1]; [n le 4 select I[n] else -Self(n-1)-Self(n-2)-Self(n-3)-Self(n-4): n in [1..100]]; // Vincenzo Librandi, Apr 29 2015
(PARI) {a(n) = [ 1, -1, 0, -1, 1][n%5 + 1]}; /* Michael Somos, Jun 16 2015 */
CROSSREFS
Sequence in context: A188031 A305387 A085241 * A138019 A179850 A267919
KEYWORD
sign,easy
AUTHOR
Paul Barry, Apr 01 2005
STATUS
approved