login
A179849
Sum of prime p and next prime after p is divisible by 7.
1
19, 41, 53, 103, 151, 211, 229, 263, 313, 397, 419, 439, 461, 479, 523, 557, 571, 709, 859, 881, 919, 977, 983, 991, 1033, 1049, 1069, 1091, 1103, 1109, 1117, 1171, 1187, 1193, 1279, 1301, 1327, 1427, 1447, 1453, 1489, 1499, 1571, 1621, 1709, 1721, 1747
OFFSET
1,1
COMMENTS
Also primes p such that the sum of p and next prime after p is a multiple of 14, since for p > 2 the sum of two consecutive primes is even. - Klaus Brockhaus, Jan 11 2011
EXAMPLE
p=19, q=23, p+q=42=7*6=14*3; p=41, q=43, p+q=84=7*12=14*6.
MATHEMATICA
fQ[n_] := Block[{q = NextPrime@ n}, Mod[n + q, 7] == 0]; Select[ Prime@ Range@ 300, fQ]
PROG
(PARI) {q=3; for(n=1, 100, p=q; q=nextprime(p+1); (p+q)%7==0&print(p))}
(Magma) IsA179849:=func< n | IsPrime(n) and (n+NextPrime(n)) mod 14 eq 0 >; [ p: p in PrimesUpTo(2000) | IsA179849(p) ]; // Klaus Brockhaus, Jan 11 2011
CROSSREFS
Cf. A031932 (lower prime of a difference of 14 between consecutive primes), A008596 (multiples of 14).
Sequence in context: A356471 A019393 A378121 * A029489 A155024 A323391
KEYWORD
nonn
AUTHOR
Zak Seidov, Jan 10 2011
STATUS
approved