OFFSET
0,2
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
a(n) = (n+1)^(n-1)*(3*n)!/n!.
E.g.f. A(x) satisfies A(x) = Sum_{n>=0} a(n)*x^(3*n)/(3n)!
This is the special case m=3 of the following:
The e.g.f. A(x) = Sum_{n>=0} a(n)*x^(m*n)/(m*n)! satisfies A(x) = exp(x^m*A(x))
(and the corresponding terms are a(n) = (n+1)^(n-1)*(m*n)!/n!).
MATHEMATICA
Table[(n+1)^(n-1)(3n)!/n!, {n, 0, 20}] (* Harvey P. Dale, Oct 19 2011 *)
PROG
(PARI)
a(n) = (n+1)^(n-1)*(3*n)!/n!;
for(n=0, 30, print1(a(n), ", "));
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Jan 11 2011
EXTENSIONS
More terms from Harvey P. Dale, Oct 19 2011
STATUS
approved