login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179853
E.g.f. A(x) = Sum_{n>=0} a(n)*x^(3n)/(3n)!.
0
1, 6, 1080, 967680, 2494800000, 14122883174400, 149450965100236800, 2657377766797737984000, 73600830148552343949312000, 3000680514334863360000000000000, 172357905733383653098084542873600000, 13469219468410593291134233865512550400000
OFFSET
0,2
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
a(n) = (n+1)^(n-1)*(3*n)!/n!.
E.g.f. A(x) satisfies A(x) = Sum_{n>=0} a(n)*x^(3*n)/(3n)!
This is the special case m=3 of the following:
The e.g.f. A(x) = Sum_{n>=0} a(n)*x^(m*n)/(m*n)! satisfies A(x) = exp(x^m*A(x))
(and the corresponding terms are a(n) = (n+1)^(n-1)*(m*n)!/n!).
MATHEMATICA
Table[(n+1)^(n-1)(3n)!/n!, {n, 0, 20}] (* Harvey P. Dale, Oct 19 2011 *)
PROG
(PARI)
a(n) = (n+1)^(n-1)*(3*n)!/n!;
for(n=0, 30, print1(a(n), ", "));
CROSSREFS
Sequence in context: A282233 A125536 A003763 * A268043 A190351 A267071
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Jan 11 2011
EXTENSIONS
More terms from Harvey P. Dale, Oct 19 2011
STATUS
approved