login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. A(x) = Sum_{n>=0} a(n)*x^(3n)/(3n)!.
0

%I #21 Oct 29 2022 09:34:02

%S 1,6,1080,967680,2494800000,14122883174400,149450965100236800,

%T 2657377766797737984000,73600830148552343949312000,

%U 3000680514334863360000000000000,172357905733383653098084542873600000,13469219468410593291134233865512550400000

%N E.g.f. A(x) = Sum_{n>=0} a(n)*x^(3n)/(3n)!.

%H Vladimir Kruchinin, D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties</a>, arXiv:1103.2582 [math.CO], 2011-2013.

%F a(n) = (n+1)^(n-1)*(3*n)!/n!.

%F E.g.f. A(x) satisfies A(x) = Sum_{n>=0} a(n)*x^(3*n)/(3n)!

%F This is the special case m=3 of the following:

%F The e.g.f. A(x) = Sum_{n>=0} a(n)*x^(m*n)/(m*n)! satisfies A(x) = exp(x^m*A(x))

%F (and the corresponding terms are a(n) = (n+1)^(n-1)*(m*n)!/n!).

%t Table[(n+1)^(n-1)(3n)!/n!,{n,0,20}] (* _Harvey P. Dale_, Oct 19 2011 *)

%o (PARI)

%o a(n) = (n+1)^(n-1)*(3*n)!/n!;

%o for(n=0,30,print1(a(n),", "));

%K nonn

%O 0,2

%A _Vladimir Kruchinin_, Jan 11 2011

%E More terms from _Harvey P. Dale_, Oct 19 2011