login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119430
Expansion of Sum_{k>=0} 2^k*x^(2k)/Product_{j=1..k} (1 - j*2x).
2
1, 0, 2, 4, 12, 40, 152, 640, 2928, 14400, 75744, 424640, 2527552, 15902848, 105313408, 731376640, 5311088896, 40233525248, 317296341504, 2600091120640, 22099119279104, 194487001540608, 1769555559897088, 16622286300921856
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} S2(k,n-k)*2^k where S2(n,k)=A048993(n,k);
a(n) = Sum_{k=0..floor(n/2)} S2(n-k,k)*2^(n-k).
MATHEMATICA
a[n_] := Sum[2^(n-k) * StirlingS2[n - k, k], {k, 0, Floor[n/2]}]; Array[a, 25, 0] (* Amiram Eldar, Apr 09 2022 *)
PROG
(PARI) a(n) = sum(k=0, n\2, 2^(n-k)*stirling(n-k, k, 2)); \\ Seiichi Manyama, Apr 08 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 19 2006
STATUS
approved