login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A222156
Number of n X 4 arrays with each row a permutation of 1..4 having at least as many downsteps as the preceding row, with rows in lexicographically nondecreasing order.
1
24, 277, 2132, 12521, 60344, 249641, 913748, 3023603, 9190984, 25981835, 68967340, 173242095, 414433320, 949144335, 2090284620, 4443280530, 9145850640, 18279915390, 35563612920, 67490348310, 125168633040, 227242504470
OFFSET
1,1
COMMENTS
Column 4 of A222159.
LINKS
FORMULA
Empirical: a(n) = (1/3201186852864000)*n^18 + (1/19760412672000)*n^17 + (251/62768369664000)*n^16 + (29/145297152000)*n^15 + (217031/31384184832000)*n^14 + (43447/249080832000)*n^13 + (2169611/658409472000)*n^12 + (3183331/67060224000)*n^11 + (231419681/438939648000)*n^10 + (36901183/8128512000)*n^9 + (146423897891/4828336128000)*n^8 + (1499409367/9580032000)*n^7 + (14551383635479/23538138624000)*n^6 + (400802254661/217945728000)*n^5 + (5254041870533/1307674368000)*n^4 + (112591393237/18162144000)*n^3 + (17776195417/2806876800)*n^2 + (46566643/12252240)*n + 1.
EXAMPLE
Some solutions for n=3
..1..2..4..3....3..2..4..1....2..3..1..4....2..1..3..4....1..4..3..2
..4..1..3..2....4..2..3..1....4..1..3..2....2..3..4..1....1..4..3..2
..4..3..1..2....4..2..3..1....4..3..1..2....3..1..2..4....2..4..3..1
CROSSREFS
Cf. A222159.
Sequence in context: A014809 A007191 A097340 * A297604 A001496 A055754
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 10 2013
STATUS
approved