OFFSET
0,5
COMMENTS
The convolution triangle of the triangular numbers A000217. - Peter Luschny, Oct 07 2022
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
FORMULA
Triangle T(n,k), read by rows, given by (0, 3, -1, 2/3, -1/6, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
T(n,0) = 0^n, T(n,k) = C(n-1+2k, n-k) for k > 0.
G.f.: (1-x)^3/((1-x)^3-y*x).
EXAMPLE
Triangle begins:
1
0, 1
0, 3, 1
0, 6, 6, 1
0, 10, 21, 9, 1
0, 15, 56, 45, 12, 1
0, 21, 126, 165, 78, 15, 1
0, 28, 252, 495, 364, 120, 18, 1
0, 36, 462, 1287, 1365, 680, 171, 21, 1
0, 45, 792, 3003, 4368, 3060, 1140, 231, 24, 1
0, 55, 1287, 6435, 12376, 11628, 5985, 1771, 300, 27, 1
0, 66, 2002, 12870, 31824, 38760, 26324, 10626, 2600, 378, 30, 1
MAPLE
# Uses function PMatrix from A357368.
PMatrix(10, n -> n * (n + 1) / 2); # Peter Luschny, Oct 07 2022
MATHEMATICA
Table[If[n == 0 && k == 0 , 1, Binomial[n - 1 + 2 k, n - k]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 25 2017 *)
PROG
(PARI) {T(n, k)=polcoeff(1/(1-x+x*O(x^(n-k)))^(3*k), n-k)}
(PARI) {T(n, k)=polcoeff(polcoeff((1-x)^3/((1-x)^3-y*x +x*O(x^n)), n, x), k, y)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
AUTHOR
Philippe Deléham, Feb 05 2012
STATUS
approved