login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206294
Riordan array (1, x/(1-x)^3).
1
1, 0, 1, 0, 3, 1, 0, 6, 6, 1, 0, 10, 21, 9, 1, 0, 15, 56, 45, 12, 1, 0, 21, 126, 165, 78, 15, 1, 0, 28, 252, 495, 364, 120, 18, 1, 0, 36, 462, 1287, 1365, 680, 171, 21, 1, 0, 45, 792, 3003, 4368, 3060, 1140, 231, 24, 1
OFFSET
0,5
COMMENTS
The convolution triangle of the triangular numbers A000217. - Peter Luschny, Oct 07 2022
FORMULA
Triangle T(n,k), read by rows, given by (0, 3, -1, 2/3, -1/6, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
T(n,0) = 0^n, T(n,k) = C(n-1+2k, n-k) for k > 0.
T(n,n) = 1, T(k+1,k) = 3*k = A008585(k), T(k+2,k) = A081266(k).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A052529(n), A052910(n) for x = 0, 1, 2 respectively.
G.f.: (1-x)^3/((1-x)^3-y*x).
EXAMPLE
Triangle begins:
1
0, 1
0, 3, 1
0, 6, 6, 1
0, 10, 21, 9, 1
0, 15, 56, 45, 12, 1
0, 21, 126, 165, 78, 15, 1
0, 28, 252, 495, 364, 120, 18, 1
0, 36, 462, 1287, 1365, 680, 171, 21, 1
0, 45, 792, 3003, 4368, 3060, 1140, 231, 24, 1
0, 55, 1287, 6435, 12376, 11628, 5985, 1771, 300, 27, 1
0, 66, 2002, 12870, 31824, 38760, 26324, 10626, 2600, 378, 30, 1
MAPLE
# Uses function PMatrix from A357368.
PMatrix(10, n -> n * (n + 1) / 2); # Peter Luschny, Oct 07 2022
MATHEMATICA
Table[If[n == 0 && k == 0 , 1, Binomial[n - 1 + 2 k, n - k]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 25 2017 *)
PROG
(PARI) {T(n, k)=polcoeff(1/(1-x+x*O(x^(n-k)))^(3*k), n-k)}
(PARI) {T(n, k)=polcoeff(polcoeff((1-x)^3/((1-x)^3-y*x +x*O(x^n)), n, x), k, y)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. Columns: A000007, A000217 (triangular numbers), A000389, A000581, A001288, A010967..(+3)..A011000, A017714..(+3)..A017762.
Row sums are A052529.
Cf. A127893.
Sequence in context: A213668 A256595 A004590 * A058150 A058151 A257673
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Feb 05 2012
STATUS
approved