login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010094
Triangle of Euler-Bernoulli or Entringer numbers.
9
1, 1, 1, 2, 2, 1, 5, 5, 4, 2, 16, 16, 14, 10, 5, 61, 61, 56, 46, 32, 16, 272, 272, 256, 224, 178, 122, 61, 1385, 1385, 1324, 1202, 1024, 800, 544, 272, 7936, 7936, 7664, 7120, 6320, 5296, 4094, 2770, 1385, 50521, 50521, 49136, 46366, 42272, 36976, 30656, 23536, 15872, 7936, 353792
OFFSET
1,4
COMMENTS
T(n, k) is the number of up-down permutations of n starting with k where 1 <= k <= n. - Michael Somos, Jan 20 2020
REFERENCES
R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde, 14 (1966), 241-246.
LINKS
Alois P. Heinz, Rows n = 1..150, flattened (first 51 rows from Vincenzo Librandi)
B. Bauslaugh and F. Ruskey, Generating alternating permutations lexicographically, Nordisk Tidskr. Informationsbehandling (BIT) 30 16-26 1990.
D. Foata and G.-N. Han, Secant Tree Calculus, arXiv preprint arXiv:1304.2485 [math.CO], 2013.
Dominique Foata and Guo-Niu Han, Seidel Triangle Sequences and Bi-Entringer Numbers, November 20, 2013.
Foata, Dominique; Han, Guo-Niu; Strehl, Volker The Entringer-Poupard matrix sequence. Linear Algebra Appl. 512, 71-96 (2017). example 4.4
M. Josuat-Verges, J.-C. Novelli and J.-Y. Thibon, The algebraic combinatorics of snakes, arXiv preprint arXiv:1110.5272 [math.CO], 2011.
J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (Abstract, pdf, ps).
C. Poupard, De nouvelles significations énumeratives des nombres d'Entringer, Discrete Math., 38 (1982), 265-271.
FORMULA
T(1, 1) = 1; T(n, n) = 0 if n > 1; T(n, k) = T(n, k+1) + T(n-1, n-k) if 1 <= k < n. - Michael Somos, Jan 20 2020
EXAMPLE
From Vincenzo Librandi, Aug 13 2013: (Start)
Triangle begins:
1;
1, 1;
2, 2, 1;
5, 5, 4, 2;
16, 16, 14, 10, 5;
61, 61, 56, 46, 32, 16;
272, 272, 256, 224, 178, 122, 61;
1385, 1385, 1324, 1202, 1024, 800, 544, 272;
7936, 7936, 7664, 7120, 6320, 5296, 4094, 2770, 1385;
... (End)
Up-down permutations for n = 4 are k = 1: 1324, 1423; k = 2: 2314, 2413; k = 3: 3411; k = 4: none. - Michael Somos, Jan 20 2020
MAPLE
b:= proc(u, o) option remember; `if`(u+o=0, 1,
add(b(o-1+j, u-j), j=1..u))
end:
T:= (n, k)-> b(n-k+1, k-1):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Jun 03 2020
MATHEMATICA
e[0, 0] = 1; e[_, 0] = 0; e[n_, k_] := e[n, k] = e[n, k-1] + e[n-1, n-k]; Join[{1}, Table[e[n, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten] (* Jean-François Alcover, Aug 13 2013 *)
PROG
(PARI) {T(n, k) = if( n < 1 || k >= n, k == 1 && n == 1, T(n, k+1) + T(n-1, n-k))}; /* Michael Somos, Jan 20 2020 */
CROSSREFS
Columns k=1,3-4 give: A000111, A006212, A006213.
Row sums give A000111(n+1).
Cf. A008282.
Sequence in context: A346520 A362925 A133611 * A019710 A118806 A328646
KEYWORD
nonn,tabl,easy,nice
EXTENSIONS
More terms from Will Root (crosswind(AT)bright.net), Oct 08 2001
Irregular zeroth row deleted by N. J. A. Sloane, Jun 04 2020
STATUS
approved