OFFSET
1,4
COMMENTS
T(n, k) is the number of up-down permutations of n starting with k where 1 <= k <= n. - Michael Somos, Jan 20 2020
REFERENCES
R. C. Entringer, A combinatorial interpretation of the Euler and Bernoulli numbers, Nieuw Archief voor Wiskunde, 14 (1966), 241-246.
LINKS
Alois P. Heinz, Rows n = 1..150, flattened (first 51 rows from Vincenzo Librandi)
B. Bauslaugh and F. Ruskey, Generating alternating permutations lexicographically, Nordisk Tidskr. Informationsbehandling (BIT) 30 16-26 1990.
D. Foata and G.-N. Han, Secant Tree Calculus, arXiv preprint arXiv:1304.2485 [math.CO], 2013.
Dominique Foata and Guo-Niu Han, Seidel Triangle Sequences and Bi-Entringer Numbers, November 20, 2013.
Foata, Dominique; Han, Guo-Niu; Strehl, Volker The Entringer-Poupard matrix sequence. Linear Algebra Appl. 512, 71-96 (2017). example 4.4
M. Josuat-Verges, J.-C. Novelli and J.-Y. Thibon, The algebraic combinatorics of snakes, arXiv preprint arXiv:1110.5272 [math.CO], 2011.
J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (Abstract, pdf, ps).
C. Poupard, De nouvelles significations énumeratives des nombres d'Entringer, Discrete Math., 38 (1982), 265-271.
FORMULA
T(1, 1) = 1; T(n, n) = 0 if n > 1; T(n, k) = T(n, k+1) + T(n-1, n-k) if 1 <= k < n. - Michael Somos, Jan 20 2020
EXAMPLE
From Vincenzo Librandi, Aug 13 2013: (Start)
Triangle begins:
1;
1, 1;
2, 2, 1;
5, 5, 4, 2;
16, 16, 14, 10, 5;
61, 61, 56, 46, 32, 16;
272, 272, 256, 224, 178, 122, 61;
1385, 1385, 1324, 1202, 1024, 800, 544, 272;
7936, 7936, 7664, 7120, 6320, 5296, 4094, 2770, 1385;
... (End)
Up-down permutations for n = 4 are k = 1: 1324, 1423; k = 2: 2314, 2413; k = 3: 3411; k = 4: none. - Michael Somos, Jan 20 2020
MAPLE
b:= proc(u, o) option remember; `if`(u+o=0, 1,
add(b(o-1+j, u-j), j=1..u))
end:
T:= (n, k)-> b(n-k+1, k-1):
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Jun 03 2020
MATHEMATICA
e[0, 0] = 1; e[_, 0] = 0; e[n_, k_] := e[n, k] = e[n, k-1] + e[n-1, n-k]; Join[{1}, Table[e[n, k], {n, 0, 11}, {k, n, 1, -1}] // Flatten] (* Jean-François Alcover, Aug 13 2013 *)
PROG
(PARI) {T(n, k) = if( n < 1 || k >= n, k == 1 && n == 1, T(n, k+1) + T(n-1, n-k))}; /* Michael Somos, Jan 20 2020 */
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
More terms from Will Root (crosswind(AT)bright.net), Oct 08 2001
Irregular zeroth row deleted by N. J. A. Sloane, Jun 04 2020
STATUS
approved