login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A018191
a(n) = Sum_{k=0..n} binomial(n, k) * k! / floor(k/2)!.
9
1, 2, 5, 16, 53, 206, 817, 3620, 16361, 80218, 401501, 2139512, 11641885, 66599846, 388962953, 2367284236, 14700573137, 94523836850, 619674301621, 4186249123808, 28809504493061, 203556335785342, 1463877667140065, 10777146970619636, 80686484464418233
OFFSET
0,2
COMMENTS
Binomial transform of { n!/floor(n/2)! }.
Number of symmetric chord diagrams of degree n-1.
Row sums of exponential Riordan array [(1+x), x(1+x)]. - Paul Barry, Apr 17 2007
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..300 (first 200 terms from Vincenzo Librandi)
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Guo-Niu Han, Enumeration of Standard Puzzles. [Cached copy]
Alexander Stoimenow, On the number of chord diagrams, Discr. Math. 218 (2000), 209-233.
FORMULA
a(n) = A047974(n-1) + (n-1)*A047974(n-2). - Vladeta Jovovic, Aug 06 2006
E.g.f.: (1 + x)*exp(x + x^2). - Vladeta Jovovic, Aug 06 2006
Recurrence: (n-2)*a(n) = (n-3)*a(n-1) + 2*(n-1)^2*a(n-2). - Vaclav Kotesovec, Oct 13 2012
a(n) ~ 2^(n/2 - 1)*exp(sqrt(n/2) - n/2 - 1/8)*n^(n/2 + 1/2)*(1 + 85/96*sqrt(2)/sqrt(n)). - Vaclav Kotesovec, Oct 13 2012
a(n) = -(n-3)*a(n-1) + 3*(n-1)*a(n-2) + 2*(n-1)*(n-2)*a(n-3) for n > 2. - Seiichi Manyama, Nov 12 2024
MAPLE
f:=n-> add(binomial(n, k)*k!/floor(k/2)!, k=0..n); [seq(f(n), n=1..40)]; # N. J. A. Sloane, Sep 25 2021
MATHEMATICA
a[n_] := Sum[Binomial[n-1, k] k! / Floor[k/2]!, {k, 0, n}];
Array[a, 25] (* Jean-François Alcover, Aug 29 2019 *)
Table[n!*SeriesCoefficient[(1+x)*E^(x+x^2), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 13 2012 *)
CROSSREFS
Sequence in context: A346518 A100442 A081126 * A006191 A149959 A161941
KEYWORD
nonn
AUTHOR
Alexander Stoimenow (stoimeno(AT)math.toronto.edu)
EXTENSIONS
Entry revised by N. J. A. Sloane, Sep 25 2021
STATUS
approved