login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161941
a(n) = ((4+sqrt(2))*(2+sqrt(2))^n + (4-sqrt(2))*(2-sqrt(2))^n)/4.
5
2, 5, 16, 54, 184, 628, 2144, 7320, 24992, 85328, 291328, 994656, 3395968, 11594560, 39586304, 135156096, 461451776, 1575494912, 5379076096, 18365314560, 62703106048, 214081795072, 730920968192, 2495520282624, 8520239194112
OFFSET
0,1
COMMENTS
Second binomial transform of A135530.
LINKS
C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), #12.7.8.
FORMULA
a(n) = 4*a(n-1) - 2*a(n-2) for n>1; a(0) = 2; a(1) = 5.
G.f.: (2-3*x)/(1-4*x+2*x^2).
a(n) = 2*A007070(n) - 3*A007070(n-1). - R. J. Mathar, Oct 20 2017
MATHEMATICA
LinearRecurrence[{4, -2}, {2, 5}, 30] (* Harvey P. Dale, May 26 2012 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((4+r)*(2+r)^n+(4-r)*(2-r)^n)/4: n in [0..24] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 01 2009
(PARI) x='x+O('x^30); Vec((2-3*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Jan 27 2018
CROSSREFS
Cf. A135530, A161944 (third binomial transform of A135530).
Sequence in context: A018191 A006191 A149959 * A120899 A149960 A149961
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Jun 22 2009
EXTENSIONS
Edited and extended beyond a(4) by Klaus Brockhaus, Jul 01 2009
STATUS
approved