The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161941 a(n) = ((4+sqrt(2))*(2+sqrt(2))^n + (4-sqrt(2))*(2-sqrt(2))^n)/4. 5
 2, 5, 16, 54, 184, 628, 2144, 7320, 24992, 85328, 291328, 994656, 3395968, 11594560, 39586304, 135156096, 461451776, 1575494912, 5379076096, 18365314560, 62703106048, 214081795072, 730920968192, 2495520282624, 8520239194112 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Second binomial transform of A135530. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), #12.7.8. Index entries for linear recurrences with constant coefficients, signature (4, -2). FORMULA a(n) = 4*a(n-1) - 2*a(n-2) for n>1; a(0) = 2; a(1) = 5. G.f.: (2-3*x)/(1-4*x+2*x^2). a(n) = 2*A007070(n) - 3*A007070(n-1). - R. J. Mathar, Oct 20 2017 MATHEMATICA LinearRecurrence[{4, -2}, {2, 5}, 30] (* Harvey P. Dale, May 26 2012 *) PROG (Magma) Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((4+r)*(2+r)^n+(4-r)*(2-r)^n)/4: n in [0..24] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 01 2009 (PARI) x='x+O('x^30); Vec((2-3*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Jan 27 2018 CROSSREFS Cf. A135530, A161944 (third binomial transform of A135530). Sequence in context: A018191 A006191 A149959 * A120899 A149960 A149961 Adjacent sequences: A161938 A161939 A161940 * A161942 A161943 A161944 KEYWORD nonn,easy AUTHOR Al Hakanson (hawkuu(AT)gmail.com), Jun 22 2009 EXTENSIONS Edited and extended beyond a(4) by Klaus Brockhaus, Jul 01 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 12:36 EDT 2024. Contains 373445 sequences. (Running on oeis4.)