login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135530 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3), with a(0)=2, a(1)=1. 11
2, 1, 4, 2, 8, 4, 16, 8, 32, 16, 64, 32, 128, 64, 256, 128, 512, 256, 1024, 512, 2048, 1024, 4096, 2048, 8192, 4096, 16384, 8192, 32768, 16384, 65536, 32768, 131072, 65536, 262144, 131072, 524288, 262144, 1048576 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,2).

FORMULA

From R. J. Mathar, Feb 23 2008: (Start)

O.g.f.: -(2+x)/(2*x^2-1).

a(n) = 2*a(n-2).

a(n) = A077957(n+1) + A077957(n+2). (End)

a(n) = (1/4)*((4 + sqrt(2))*(sqrt(2))^(n) + (4 - sqrt(2))*(-sqrt(2))^(n) ). - Paolo P. Lava, Jun 06 2008

E.g.f.: (1/sqrt(2))*( 2*sqrt(2)*cosh(sqrt(2)*x) + sinh(sqrt(2)*x) ). - G. C. Greubel, Oct 17 2016

a(n) = A076736(n+4) for n >= 0. - Georg Fischer, Nov 03 2018

MATHEMATICA

CoefficientList[Series[(-x-2)/(2x^2-1), {x, 0, 40}], x]

Transpose[NestList[{#[[2]], Last[#], Last[#]+2#[[2]]-2First[#]}&, {2, 1, 4}, 45]][[1]]  (* Harvey P. Dale, Mar 05 2011 *)

LinearRecurrence[{0, 2}, {2, 1}, 25] (* G. C. Greubel, Oct 17 2016 *)

PROG

(PARI) a(n)=1<<(1-n%2+n\2) \\ Charles R Greathouse IV, Jun 01 2011

CROSSREFS

Cf. A076736, A077957.

Sequence in context: A085086 A274623 A265256 * A137206 A076736 A182906

Adjacent sequences:  A135527 A135528 A135529 * A135531 A135532 A135533

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Feb 20 2008

EXTENSIONS

More terms from R. J. Mathar, Feb 23 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 3 17:50 EDT 2022. Contains 355055 sequences. (Running on oeis4.)