OFFSET
1,4
COMMENTS
The sequence 1,4,2,8,4,... has g.f. (1+4*x)/(1-2*x^2) and a(n) = 2^(n/2)*(1+2*sqrt(2) + (1-2*sqrt(2))*(-1)^n)/2. - Paul Barry, Apr 26 2004
The sequence 2,1,4,2,8,... has a(n) = 2^(n/2)*(1+2*sqrt(2)-(1-2*sqrt(2))*(-1)^n)/(2*sqrt(2)) and is essentially the pair-reversal of A016116. - Paul Barry, Apr 26 2004
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (0,2).
FORMULA
For n > 4, a(n) = 2^A028242(n-4).
From Colin Barker, Oct 14 2014: (Start)
For n > 5, a(n) = 2*a(n-2).
G.f.: x*(x-1)*(x^3+x^2+2*x+1) / (2*x^2-1). (End)
MATHEMATICA
LinearRecurrence[{0, 2}, {1, 1, 1, 2, 1}, 50] (* Harvey P. Dale, Aug 25 2015 *)
CROSSREFS
KEYWORD
frac,nonn,easy
AUTHOR
Benoit Cloitre, Nov 24 2002
EXTENSIONS
More terms from Paul Barry, Apr 26 2004
STATUS
approved