login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076733
Largest k such that k! divides C(2n,n).
3
2, 3, 2, 2, 3, 3, 4, 3, 2, 2, 4, 2, 2, 5, 6, 3, 3, 3, 5, 3, 5, 5, 6, 3, 4, 4, 2, 2, 5, 2, 2, 3, 3, 3, 4, 2, 2, 5, 2, 2, 5, 5, 7, 5, 7, 7, 7, 3, 5, 4, 4, 4, 7, 5, 4, 4, 4, 5, 6, 4, 4, 4, 5, 3, 3, 3, 5, 3, 5, 5, 6, 3, 5, 5, 7, 5, 7, 7, 7, 3, 2, 2, 5, 2, 2, 7, 5, 5, 7, 2, 2, 5, 2, 2, 7, 3, 5, 5, 5, 5, 6, 5, 5, 5, 6
OFFSET
1,1
COMMENTS
All a(n) >= 2, with a(n) = 2 if and only if n is in A005836. - Robert Israel, Feb 01 2019
LINKS
MAPLE
f:= proc(n) local x, k;
x:= binomial(2*n, n);
for k from 2 do if not (x/k!)::integer then return k-1 fi od
end proc:
map(f, [$1..105]); # Robert Israel, Feb 01 2019
MATHEMATICA
a[n_] := Module[{k = 2}, While[Divisible[Binomial[2n, n], k!], k++]; k-1];
Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Oct 01 2024 *)
PROG
(PARI) a(n)=if(n<0, 0, k=1; while(binomial(2*n, n)%(k!) == 0, k++); k-1)
CROSSREFS
Sequence in context: A242789 A366712 A366713 * A079643 A329317 A118480
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Oct 28 2002
STATUS
approved