|
|
A135532
|
|
a(n) = 2*a(n-1) + a(n-2), with a(0)= -1, a(1)= 3.
|
|
11
|
|
|
-1, 3, 5, 13, 31, 75, 181, 437, 1055, 2547, 6149, 14845, 35839, 86523, 208885, 504293, 1217471, 2939235, 7095941, 17131117, 41358175, 99847467, 241053109, 581953685, 1404960479, 3391874643, 8188709765, 19769294173, 47727298111, 115223890395, 278175078901, 671574048197
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Double binomial transform of [1, 3, -5, 13, -31, 75, -181, ...] = the Pell-like sequence A048655: (1, 5, 11, 27, 65, 157, ...). - Gary W. Adamson, Jul 23 2008
|
|
LINKS
|
|
|
FORMULA
|
O.g.f.: (-1 + 5*x)/(1 - 2*x - x^2).
a(n) = (1/2)*( (2*sqrt(2) - 1)*(1 + sqrt(2))^n - (1 + 2*sqrt(2))*(1 - sqrt(2))^n ), with n>=0. - Paolo P. Lava, Jun 09 2008
a(n) = ((3+sqrt(2))*(1+sqrt(2))^n + (3-sqrt(2))*(1-sqrt(2))^n)/2 with offset 0. - Al Hakanson (hawkuu(AT)gmail.com), Jun 17 2009
|
|
MATHEMATICA
|
LinearRecurrence[{2, 1}, {-1, 3}, 25] (* G. C. Greubel, Oct 17 2016 *)
|
|
PROG
|
(Magma) I:=[-1, 3]; [n le 2 select I[n] else 2*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, May 22 2021
(Sage) [(lucas_number2(n, 2, -1) + 2*lucas_number2(n-1, 2, -1))/2 for n in (0..30)] # G. C. Greubel, May 22 2021
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|