The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135528 1, then repeat 1,0. 6
 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is Guy Steele's sequence GS(2, 1) (see A135416). 2-adic expansion of 1/3 (right to left): 1/3 = ...01010101010101011. - Philippe Deléham, Mar 24 2009 Also, with offset 0, parity of A036467(n-1). - Omar E. Pol, Mar 17 2015 LINKS Andrei Asinowski, Cyril Banderier, Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019). FORMULA a(n) = (1/2)*(1+(-1)^n)+(C(2*(n-1),(n-1)) mod 2). - Paolo P. Lava, Mar 03 2008 G.f.: x*(1+x-x^2)/(1-x^2). - Philippe Deléham, Feb 08 2012 G.f.: x / (1 - x / (1 + x / (1 + x / (1 - x)))). - Michael Somos, Apr 02 2012 a(n) = A049711(n+2) mod 2. - Ctibor O. Zizka, Jan 28 2019 EXAMPLE G.f. = x + x^2 + x^4 + x^6 + x^8 + x^10 + x^12 + x^14 + x^16 + x^18 + x^20 + ... MAPLE GS(2, 1, 200); [see A135416]. MATHEMATICA Prepend[Table[Mod[n + 1, 2], {n, 2, 60}], 1] (* Michael De Vlieger, Mar 17 2015 *) PROG (Haskell) a135528 n = a135528_list !! (n-1) a135528_list = concat \$ iterate ([1, 0] *) [1] instance Num a => Num [a] where fromInteger k = [fromInteger k]    (p:ps) + (q:qs) = p + q : ps + qs    ps + qs         = ps ++ qs    (0:ps) * qs         = 0 : ps * qs    (p:ps) * qs'@(q:qs) = p * q : ps * qs' + [p] * qs    _ * _               = [] -- Reinhard Zumkeller, Apr 02 2011 CROSSREFS Cf. A036467, A049711, A135416. Sequence in context: A257170 A073097 A117569 * A163805 A267015 A078387 Adjacent sequences:  A135525 A135526 A135527 * A135529 A135530 A135531 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, based on a message from Guy Steele and Don Knuth, Mar 01 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 26 09:52 EDT 2022. Contains 354879 sequences. (Running on oeis4.)