login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163805
Expansion of (1 - x) * (1 - x^6) / ((1 - x^3) * (1 - x^4)) in powers of x.
8
1, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0
OFFSET
0,1
FORMULA
Euler transform of length 6 sequence [ -1, 0, 1, 1, 0, -1].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (2 - v) - u * (2 - u) * (3 - 2*v).
a(2*n) = 0 unless n=0, a(4*n + 1) = -1, a(4*n + 3) = a(0) = 1.
a(-n) = -a(n) unless n=0. a(n+4) = a(n) unless n=0 or n=-4.
a(n) = - A117569(n) unless n=0. a(n) = (-1)^n * A117569(n).
Convolution inverse of A163806.
G.f.: (1 - x + x^2) / (1 + x^2).
G.f. A(x) = 1 - x / (1 + x^2) = 1 / (1 + x / (1 - x / (1 + x / (1 - x)))). - Michael Somos, Jan 03 2013
a(n) = A101455(n-2) = A056594(n-3), n>2. - R. J. Mathar, Aug 06 2009
E.g.f.: 1 - sin(x). - Stefano Spezia, Nov 16 2024
a(n) = sin(3*n*Pi/2), for n>0. - Ridouane Oudra, Nov 18 2024
EXAMPLE
G.f. = 1 - x + x^3 - x^5 + x^7 - x^9 + x^11 - x^13 + x^15 - x^17 + x^19 + ...
MAPLE
1, seq(sin(3*n*Pi/2), n=1..100); # Ridouane Oudra, Nov 18 2024
MATHEMATICA
a[ n_] := Boole[n == 0] + {-1, 0, 1, 0}[[Mod[n, 4, 1]]]; (* Michael Somos, Sep 06 2015 *)
PROG
(PARI) {a(n) = (n==0) + [0, -1, 0, 1][n%4 + 1]};
(PARI) {a(n) = (n==0) - kronecker(-4, n)};
CROSSREFS
Sequence in context: A073097 A117569 A135528 * A267015 A078387 A189292
KEYWORD
sign,easy
AUTHOR
Michael Somos, Aug 04 2009
STATUS
approved