login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163804
Expansion of (1 - x) * (1 - x^4) / ((1 - x^2) * (1 - x^3)) in powers of x.
3
1, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0
OFFSET
0,1
FORMULA
Euler transform of length 4 sequence [ -1, 1, 1, -1].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = 2 - v - u * (4 - 2*v - u).
a(3*n) = 0 unless n=0, a(3*n + 1) = -1, a(3*n + 2) = a(0) = 1.
a(-n) = -a(n) unless n=0. a(n+3) = a(n) unless n=0 or n=-3.
G.f.: (1 + x^2) / (1 + x + x^2).
G.f. A(x) = 1 / (1 + x / (1 + x^2)) = 1 - x / (1 + x / (1 - x / (1 + x))). - Michael Somos, Jan 03 2013
a(n) = A057078(n-2), n>1. - R. J. Mathar, Aug 06 2009
EXAMPLE
1 - x + x^2 - x^4 + x^5 - x^7 + x^8 - x^10 + x^11 - x^13 + x^14 + ...
MATHEMATICA
Join[{1}, LinearRecurrence[{-1, -1}, {-1, 1}, 105]] (* Ray Chandler, Sep 15 2015 *)
PROG
(PARI) {a(n) = (n==0) + [0, -1, 1][n%3 + 1]}
(PARI) {a(n) = (n==0) - kronecker(-3, n)}
CROSSREFS
A106510(n) = -a(n) unless n=0. Convolution inverse of A117659.
Sequence in context: A106510 A163806 A163810 * A181653 A343159 A155091
KEYWORD
sign,easy
AUTHOR
Michael Somos, Aug 04 2009
STATUS
approved