login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081125
a(n) = n! / floor(n/2)!.
13
1, 1, 2, 6, 12, 60, 120, 840, 1680, 15120, 30240, 332640, 665280, 8648640, 17297280, 259459200, 518918400, 8821612800, 17643225600, 335221286400, 670442572800, 14079294028800, 28158588057600, 647647525324800, 1295295050649600
OFFSET
0,3
COMMENTS
Product of the largest parts in the partitions of n+1 into exactly two parts, n > 0. - Wesley Ivan Hurt, Jan 26 2013 (Clarified on Apr 20 2016)
FORMULA
E.g.f.: (1+x)*exp(x^2). - Vladeta Jovovic, Sep 24 2003
From Peter Luschny, Aug 07 2009: (Start)
a(n) = sqrt(n!*n$) where n$ denotes the swinging factorial (A056040).
a(n) = 2^n Gamma((n+1+(n mod 2))/2)/sqrt(Pi). (End)
E.g.f.: E(0) where E(k) = 1 + x/(1 - x/(x + (k+1)/E(k+1))) ; (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Sep 20 2012
G.f.: G(0) where G(k) = 1 + x*(2*k+1)/(1 - 2*x/(2*x + 1/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 18 2012
Conjecture: a(n) +2*a(n-1) -2*n*a(n-2) +4*(-n+2)*a(n-3) = 0. - R. J. Mathar, Nov 26 2012
From Wesley Ivan Hurt, Jun 06 2013: (Start)
a(n) = n!/(n-floor((n+1)/2))!.
a(n) = Product_{i = ceiling(n/2)..(n-1)} i. [Note: empty product = 1]
a(n) = P( n, floor((n+1)/2) ), where P(n,k) are the number of k-permutations of n objects. (End)
a(n) = n$*floor(n/2)! where n$ denotes the swinging factorial (A056040). - Peter Luschny, Oct 28 2013
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + (3/2)*exp(1/4)*sqrt(Pi)*erf(1/2).
Sum_{n>=0} (-1)^n/a(n) = 1 - (1/2)*exp(1/4)*sqrt(Pi)*erf(1/2). (End)
EXAMPLE
a(3) = 6 since 3+1 = 4 has two partitions into two parts, (3,1) and (2,2), and the product of the largest parts is 6. - Wesley Ivan Hurt, Jan 26 2013 (Clarified on Apr 20 2016)
MAPLE
Method 1) a:=n->n!/floor(n/2)!; seq(a(k), k=0..40); # Wesley Ivan Hurt, Jun 03 2013
Method 2) with(combinat, numbperm); seq(numbperm(k, floor((k+1)/2)), k = 0..40); # Wesley Ivan Hurt, Jun 06 2013
MATHEMATICA
Table[n!/Floor[n/2]!, {n, 0, 30}] (* Wesley Ivan Hurt, Apr 20 2016 *)
PROG
(Magma) [Factorial(n)/(Factorial(Floor(n/2))): n in [0..30]]; // Vincenzo Librandi, Sep 13 2011
(PARI) a(n)=n!/(n\2)! \\ Charles R Greathouse IV, Sep 13 2011
(Sage)
def a(n): return rising_factorial(ceil(n/2), floor(n/2))
[a(n) for n in range(26)] # Peter Luschny, Oct 09 2013
(Python)
from sympy import rf
def A081125(n): return rf((m:=n+1>>1)+(n+1&1), m) # Chai Wah Wu, Jul 22 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Mar 07 2003
STATUS
approved