The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161887 A product of quotients of factorials. 1
 1, 2, 6, 12, 60, 120, 840, 7560, 15120, 110880, 166320, 1441440, 2882880, 10810800, 43243200, 183783600, 367567200, 2793510720, 6983776800, 58663725120, 117327450240, 299836817280, 2698531355520, 7495920432000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Definition: Let b(n,k) = floor(n/2^k)! and m = log[2](n) then c(n) = product_{k=1..m} b(n,k) / b(n,k+1)^2. a(n) is the sequence derived from c(n) by eliminating duplicates and sorting the values. a(1) through a(19) are highly composite numbers (A002182). The number of divisors of a(1) through a(28) are number of divisors of highly composite numbers (A002183). A055773(floor(n/2)) is a divisor of a(n), a(n)/A055773(floor(n/2)) after eliminating duplicates and sorting starts 1,4,24,216,1440,2160,.. LINKS Amiram Eldar, Table of n, a(n) for n = 1..1669 MAPLE a := proc(n) local m, k; m := nops(convert(n, base, 2)); mul(iquo(n, 2^k)!/iquo(n, 2^(k+1))!^2, k=1..m-1) end: seq(a(i), i=1..50): A:=sort(convert({%}, list)); MATHEMATICA b[n_, k_] := Floor[n/2^k]!; c[n_] := Product[b[n, k]/b[n, k+1]^2, {k, 1, Log[2, n]}]; A = Array[c, 50] // DeleteDuplicates // Sort (* Jean-François Alcover, Jun 17 2019 *) CROSSREFS Cf. A002182, A002183. Sequence in context: A096123 A081125 A138570 * A139315 A014767 A002319 Adjacent sequences:  A161884 A161885 A161886 * A161888 A161889 A161890 KEYWORD easy,nonn AUTHOR Peter Luschny, Jun 21 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 00:37 EDT 2021. Contains 345125 sequences. (Running on oeis4.)