OFFSET
1,2
COMMENTS
Definition: Let b(n,k) = floor(n/2^k)! and m = log[2](n) then c(n) = product_{k=1..m} b(n,k) / b(n,k+1)^2.
a(n) is the sequence derived from c(n) by eliminating duplicates and sorting the values.
a(1) through a(19) are highly composite numbers (A002182).
The number of divisors of a(1) through a(28) are number of divisors of highly composite numbers (A002183).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..1669
MAPLE
a := proc(n) local m, k; m := nops(convert(n, base, 2));
mul(iquo(n, 2^k)!/iquo(n, 2^(k+1))!^2, k=1..m-1) end:
seq(a(i), i=1..50): A:=sort(convert({%}, list));
MATHEMATICA
b[n_, k_] := Floor[n/2^k]!; c[n_] := Product[b[n, k]/b[n, k+1]^2, {k, 1, Log[2, n]}]; A = Array[c, 50] // DeleteDuplicates // Sort (* Jean-François Alcover, Jun 17 2019 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Peter Luschny, Jun 21 2009
STATUS
approved