login
A161887
A product of quotients of factorials.
1
1, 2, 6, 12, 60, 120, 840, 7560, 15120, 110880, 166320, 1441440, 2882880, 10810800, 43243200, 183783600, 367567200, 2793510720, 6983776800, 58663725120, 117327450240, 299836817280, 2698531355520, 7495920432000
OFFSET
1,2
COMMENTS
Definition: Let b(n,k) = floor(n/2^k)! and m = log[2](n) then c(n) = product_{k=1..m} b(n,k) / b(n,k+1)^2.
a(n) is the sequence derived from c(n) by eliminating duplicates and sorting the values.
a(1) through a(19) are highly composite numbers (A002182).
The number of divisors of a(1) through a(28) are number of divisors of highly composite numbers (A002183).
A055773(floor(n/2)) is a divisor of a(n), a(n)/A055773(floor(n/2)) after eliminating duplicates and sorting starts 1,4,24,216,1440,2160,..
LINKS
MAPLE
a := proc(n) local m, k; m := nops(convert(n, base, 2));
mul(iquo(n, 2^k)!/iquo(n, 2^(k+1))!^2, k=1..m-1) end:
seq(a(i), i=1..50): A:=sort(convert({%}, list));
MATHEMATICA
b[n_, k_] := Floor[n/2^k]!; c[n_] := Product[b[n, k]/b[n, k+1]^2, {k, 1, Log[2, n]}]; A = Array[c, 50] // DeleteDuplicates // Sort (* Jean-François Alcover, Jun 17 2019 *)
CROSSREFS
Sequence in context: A096123 A081125 A138570 * A139315 A014767 A002319
KEYWORD
easy,nonn
AUTHOR
Peter Luschny, Jun 21 2009
STATUS
approved