The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161884 Smallest k such that n^4 = a_1^4+...+a_k^4 and all a_i are positive integers less than n. 6
 16, 6, 16, 5, 6, 6, 16, 6, 5, 7, 6, 6, 6, 5, 16, 6, 6, 6, 5, 6, 7, 6, 6, 5, 6, 6, 6, 6, 5, 5, 16, 6, 6, 5, 6, 6, 6, 6, 5, 6, 6, 6, 7, 5, 6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 6, 5, 6, 16, 5, 6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS It follows from Balasubramanian, Deshouillers, & Dress' result g(4) = 19 that a(n) <= 20. Deshouillers, Hennecart, & Landreau and Deshouillers, Kawada, & Wooley together give an effective proof that G(4) = 16, from which it can be determined by checking the 96 exceptions that a(n) <= 17. Probably a(n) <= 16. [Charles R Greathouse IV, Jul 31 2011] REFERENCES J.-M. Deshouillers, K. Kawada, and T. D. Wooley, "On sums of sixteen biquadrates", Mem. Soc. Math. Fr. 100 (2005), 120 pp. LINKS Giovanni Resta, Table of n, a(n) for n = 2..250 R. Balasubramanian, J.-M. Deshouillers, and F. Dress, Problème de Waring pour les bicarrés I, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 303 (1986), pp. 85-88. R. Balasubramanian, J.-M. Deshouillers, and F. Dress, Problème de Waring pour les bicarrés II, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 303 (1986), pp. 161-163. J.-M. Deshouillers, F. Hennecart and B. Landreau, Waring's Problem for sixteen biquadrates - numerical results, Journal de Théorie des Nombres de Bordeaux 12 (2000), pp. 411-422. Jean-Charles Meyrignac, Computing minimal equal sums of like powers Manfred Scheucher, Sage Script Eric W. Weisstein, Diophantine Equation 4th Powers PROG (PARI) a(n, verbose=0, m=4)={N=n^m; for(k=3, 99, forvec(v=vector(k-1, i, [1, n\sqrtn((k+1-i)*0.99999, m)]), ispower(N-sum(i=1, k-1, v[i]^m), m, &K)&&K>0&&!if(verbose, print1("/*"n" "v"*/"))&&return(k), 1))} \\ M. F. Hasler, Dec 17 2014 CROSSREFS Cf. A161882, A161883, A161885, A099591. Sequence in context: A084527 A084517 A070568 * A166210 A141078 A298830 Adjacent sequences: A161881 A161882 A161883 * A161885 A161886 A161887 KEYWORD nonn AUTHOR Dmitry Kamenetsky, Jun 21 2009 EXTENSIONS a(51)-a(63) from M. F. Hasler, Dec 17 2014 a(64)-a(86) from Giovanni Resta, Aug 17 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 15:07 EDT 2024. Contains 372642 sequences. (Running on oeis4.)