Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #79 Jul 22 2022 16:44:43
%S 1,1,2,6,12,60,120,840,1680,15120,30240,332640,665280,8648640,
%T 17297280,259459200,518918400,8821612800,17643225600,335221286400,
%U 670442572800,14079294028800,28158588057600,647647525324800,1295295050649600
%N a(n) = n! / floor(n/2)!.
%C Product of the largest parts in the partitions of n+1 into exactly two parts, n > 0. - _Wesley Ivan Hurt_, Jan 26 2013 (Clarified on Apr 20 2016)
%H Vincenzo Librandi, <a href="/A081125/b081125.txt">Table of n, a(n) for n = 0..400</a>
%H Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011.
%H <a href="/index/Di#divseq">Index to divisibility sequences</a>.
%F E.g.f.: (1+x)*exp(x^2). - _Vladeta Jovovic_, Sep 24 2003
%F From _Peter Luschny_, Aug 07 2009: (Start)
%F a(n) = sqrt(n!*n$) where n$ denotes the swinging factorial (A056040).
%F a(n) = 2^n Gamma((n+1+(n mod 2))/2)/sqrt(Pi). (End)
%F E.g.f.: E(0) where E(k) = 1 + x/(1 - x/(x + (k+1)/E(k+1))) ; (continued fraction, 3rd kind, 3-step). - _Sergei N. Gladkovskii_, Sep 20 2012
%F G.f.: G(0) where G(k) = 1 + x*(2*k+1)/(1 - 2*x/(2*x + 1/G(k+1))); (continued fraction, 3-step). - _Sergei N. Gladkovskii_, Nov 18 2012
%F Conjecture: a(n) +2*a(n-1) -2*n*a(n-2) +4*(-n+2)*a(n-3) = 0. - _R. J. Mathar_, Nov 26 2012
%F From _Wesley Ivan Hurt_, Jun 06 2013: (Start)
%F a(n) = n!/(n-floor((n+1)/2))!.
%F a(n) = Product_{i = ceiling(n/2)..(n-1)} i. [Note: empty product = 1]
%F a(n) = P( n, floor((n+1)/2) ), where P(n,k) are the number of k-permutations of n objects. (End)
%F a(n) = n$*floor(n/2)! where n$ denotes the swinging factorial (A056040). - _Peter Luschny_, Oct 28 2013
%F From _Amiram Eldar_, Mar 10 2022: (Start)
%F Sum_{n>=0} 1/a(n) = 1 + (3/2)*exp(1/4)*sqrt(Pi)*erf(1/2).
%F Sum_{n>=0} (-1)^n/a(n) = 1 - (1/2)*exp(1/4)*sqrt(Pi)*erf(1/2). (End)
%e a(3) = 6 since 3+1 = 4 has two partitions into two parts, (3,1) and (2,2), and the product of the largest parts is 6. - _Wesley Ivan Hurt_, Jan 26 2013 (Clarified on Apr 20 2016)
%p Method 1) a:=n->n!/floor(n/2)!; seq(a(k),k=0..40); # _Wesley Ivan Hurt_, Jun 03 2013
%p Method 2) with(combinat, numbperm); seq(numbperm(k, floor((k+1)/2)), k = 0..40); # _Wesley Ivan Hurt_, Jun 06 2013
%t Table[n!/Floor[n/2]!, {n, 0, 30}] (* _Wesley Ivan Hurt_, Apr 20 2016 *)
%o (Magma) [Factorial(n)/(Factorial(Floor(n/2))): n in [0..30]]; // _Vincenzo Librandi_, Sep 13 2011
%o (PARI) a(n)=n!/(n\2)! \\ _Charles R Greathouse IV_, Sep 13 2011
%o (Sage)
%o def a(n): return rising_factorial(ceil(n/2),floor(n/2))
%o [a(n) for n in range(26)] # _Peter Luschny_, Oct 09 2013
%o (Python)
%o from sympy import rf
%o def A081125(n): return rf((m:=n+1>>1)+(n+1&1),m) # _Chai Wah Wu_, Jul 22 2022
%Y Cf. A004526, A056040, A081123.
%K nonn,easy
%O 0,3
%A _Paul Barry_, Mar 07 2003