OFFSET
1,2
COMMENTS
A generator is a leaf or a node with just one child.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..200
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Euler Transform.
FORMULA
G.f.: satisfies (2-x)*A(x) = x - 1 + EULER(A(x)).
MATHEMATICA
a[1] = 1; a[n_] := a[n] = 1+a[n-1]+Total[Product[Binomial[a[i]-1+Count[#, i], Count[#, i]], {i, DeleteCases[DeleteDuplicates[#], 1]}]&/@ IntegerPartitions[n, {2, n-1}]]; Table[a[n], {n, 24}] (* Robert A. Russell, Jun 02 2020 *)
a[1] = 1; a[n_] := a[n] = a[n-1] + (DivisorSum[n, a[#] # &, #<n &] + Sum[c[k] b[n-k], {k, 1, n-1}])/n; b[n_] := b[n] = (c[n] + Sum[c[k] b[n-k], {k, 1, n-1}])/n; c[n_] := c[n] = DivisorSum[n, a[#] # &]; Table[a[k], {k, 24}] (* Robert A. Russell, Jun 04 2020 *)
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(v=[1]); for(n=2, n, v=concat(v, v[#v] + EulerT(concat(v, [0]))[n])); v} \\ Andrew Howroyd, Aug 31 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jun 07 2005
STATUS
approved