login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108521
Number of rooted trees with n generators.
11
1, 2, 5, 16, 53, 194, 730, 2868, 11526, 47370, 197786, 837467, 3585696, 15501423, 67563442, 296579626, 1309973823, 5817855174, 25964218471, 116379947718, 523699384013, 2364967753113, 10714396241046, 48684193997623
OFFSET
1,2
COMMENTS
A generator is a leaf or a node with just one child.
LINKS
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Euler Transform.
FORMULA
G.f.: satisfies (2-x)*A(x) = x - 1 + EULER(A(x)).
MATHEMATICA
a[1] = 1; a[n_] := a[n] = 1+a[n-1]+Total[Product[Binomial[a[i]-1+Count[#, i], Count[#, i]], {i, DeleteCases[DeleteDuplicates[#], 1]}]&/@ IntegerPartitions[n, {2, n-1}]]; Table[a[n], {n, 24}] (* Robert A. Russell, Jun 02 2020 *)
a[1] = 1; a[n_] := a[n] = a[n-1] + (DivisorSum[n, a[#] # &, #<n &] + Sum[c[k] b[n-k], {k, 1, n-1}])/n; b[n_] := b[n] = (c[n] + Sum[c[k] b[n-k], {k, 1, n-1}])/n; c[n_] := c[n] = DivisorSum[n, a[#] # &]; Table[a[k], {k, 24}] (* Robert A. Russell, Jun 04 2020 *)
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(v=[1]); for(n=2, n, v=concat(v, v[#v] + EulerT(concat(v, [0]))[n])); v} \\ Andrew Howroyd, Aug 31 2018
CROSSREFS
Cf. A000081, A000669, A007151, A108522 - A108529, A335342 (free trees).
Sequence in context: A149958 A148395 A148396 * A148397 A148398 A346518
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jun 07 2005
STATUS
approved