login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of rooted trees with n generators.
11

%I #25 Aug 06 2020 18:25:03

%S 1,2,5,16,53,194,730,2868,11526,47370,197786,837467,3585696,15501423,

%T 67563442,296579626,1309973823,5817855174,25964218471,116379947718,

%U 523699384013,2364967753113,10714396241046,48684193997623

%N Number of rooted trees with n generators.

%C A generator is a leaf or a node with just one child.

%H Andrew Howroyd, <a href="/A108521/b108521.txt">Table of n, a(n) for n = 1..200</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EulerTransform.html">Euler Transform</a>.

%H <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>

%F G.f.: satisfies (2-x)*A(x) = x - 1 + EULER(A(x)).

%t a[1] = 1; a[n_] := a[n] = 1+a[n-1]+Total[Product[Binomial[a[i]-1+Count[#,i], Count[#,i]], {i, DeleteCases[DeleteDuplicates[#],1]}]&/@ IntegerPartitions[n,{2,n-1}]]; Table[a[n],{n,24}] (* _Robert A. Russell_, Jun 02 2020 *)

%t a[1] = 1; a[n_] := a[n] = a[n-1] + (DivisorSum[n, a[#] # &, #<n &] + Sum[c[k] b[n-k], {k,1,n-1}])/n; b[n_] := b[n] = (c[n] + Sum[c[k] b[n-k], {k,1,n-1}])/n; c[n_] := c[n] = DivisorSum[n, a[#] # &]; Table[a[k], {k, 24}] (* _Robert A. Russell_, Jun 04 2020 *)

%o (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}

%o seq(n)={my(v=[1]); for(n=2, n, v=concat(v, v[#v] + EulerT(concat(v,[0]))[n])); v} \\ _Andrew Howroyd_, Aug 31 2018

%Y Cf. A000081, A000669, A007151, A108522 - A108529, A335342 (free trees).

%K nonn

%O 1,2

%A _Christian G. Bower_, Jun 07 2005