login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of partitions of all n-multisets {1,2,...,n-j,1,2,...,j} for 0 <= j <= n.
4

%I #18 Mar 12 2022 11:33:30

%S 1,2,6,18,61,228,926,4126,19688,101582,556763,3258810,20134527,

%T 131591030,902915694,6506096000,48986713992,385159376478,

%U 3151457714098,26806601933838,236457090358459,2160451562170100,20408176433186475,199086685731569740,2002713693735431017

%N Total number of partitions of all n-multisets {1,2,...,n-j,1,2,...,j} for 0 <= j <= n.

%C Also total number of factorizations of Product_{i=1..n-j} prime(i) * Product_{i=1..j} prime(i) for 0 <= j <= n.

%H Alois P. Heinz, <a href="/A346490/b346490.txt">Table of n, a(n) for n = 0..576</a>

%F a(n) = Sum_{j=0..n} A001055(A002110(n-j)*A002110(j)).

%F a(n) = Sum_{j=0..n} A346500(n-j,j).

%p b:= proc(n) option remember; `if`(n=0, 1,

%p add(b(n-j)*binomial(n-1, j-1), j=1..n))

%p end:

%p A:= proc(n, k) option remember; `if`(n<k, A(k, n),

%p `if`(k=0, b(n), (A(n+1, k-1)+add(A(n-k+j, j)

%p *binomial(k-1, j), j=0..k-1)+A(n, k-1))/2))

%p end:

%p a:= n-> add(A(n-j, j), j=0..n):

%p seq(a(n), n=0..24);

%t b[n_] := b[n] = If[n == 0, 1,

%t Sum[b[n - j]*Binomial[n - 1, j - 1], {j, 1, n}]];

%t A[n_, k_] := A[n, k] = If[n < k, A[k, n],

%t If[k == 0, b[n], (A[n + 1, k - 1] + Sum[A[n - k + j, j]

%t *Binomial[k - 1, j], {j, 0, k - 1}] + A[n, k - 1])/2]];

%t a[n_] := Sum[A[n - j, j], {j, 0, n}];

%t Table[a[n], {n, 0, 24}] (* _Jean-François Alcover_, Mar 12 2022, after _Alois P. Heinz_ *)

%Y Antidiagonal sums of A346500.

%Y Cf. A001055, A002110, A346428, A346518.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Jul 19 2021