login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of factorizations of the n-th Fibonacci number.
1

%I #16 Sep 08 2022 08:29:09

%S 1,1,1,1,1,3,1,2,2,2,1,29,1,2,5,5,1,21,2,15,5,2,1,719,4,2,15,15,1,296,

%T 2,15,5,2,5,4323,5,5,5,203,2,296,1,52,52,5,1,32653,5,135,5,15,2,1315,

%U 15,566,52,5,2,270920,2,5,52,203,5,296,5,52,52,877,2

%N Number of factorizations of the n-th Fibonacci number.

%H Alois P. Heinz, <a href="/A346491/b346491.txt">Table of n, a(n) for n = 1..119</a>

%F a(n) = A001055(A000045).

%F a(n) = A001055(A046523(A000045(n))).

%F a(n) = A001055(A278245(n)).

%F a(n) = 1 <=> n in { A001605 } union {1,2}.

%F a(n) = 2 <=> n in { A072381 }.

%p b:= proc(n, k) option remember; `if`(n>k, 0, 1)+`if`(isprime(n), 0,

%p add(`if`(d>k, 0, b(n/d, d)), d=numtheory[divisors](n) minus {1, n}))

%p end:

%p a:= proc(n) option remember; b((l-> mul(ithprime(i)^l[i], i=1..nops(l)))(

%p sort(map(i-> i[2], ifactors(combinat[fibonacci](n))[2]), `>`))$2)

%p end:

%p seq(a(n), n=1..80);

%t T[_, 1] = T[1, _] = 1;

%t T[n_, m_] := T[n, m] = DivisorSum[n, If[1 < # <= m, T[n/#, #], 0]&];

%t f[n_] := T[n, n];

%t a[n_] := f[Fibonacci[n]];

%t Table[Print[n, " ", a[n]]; a[n], {n, 1, 119}] (* _Jean-François Alcover_, Sep 08 2022 *)

%Y Cf. A000045, A001055, A001605, A046523, A072381, A278245.

%K nonn

%O 1,6

%A _Alois P. Heinz_, Jul 19 2021