Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Sep 04 2021 04:36:15
%S 3,1,2,2,2,1,8,1,2,1,2,9,8,6,56,5,38,1,2,1,5,1,5,1,2,10,3,10,741,1,5,
%T 3,3,1,5,2,3,1,1,1,1,2,1,1,2,2,1,7,2,3,3,4,4,1,11,1,2,1,1,1,1,1,5,1,
%U 64,1,1,2,7,1,5,98,2,2,2,1,1,1,1,1,5,1,3,1
%N Simple continued fraction expansion of Pi^(3/2)/Gamma(3/4)^2.
%H M. Parker, <a href="https://www.youtube.com/watch?v=gjtTcyWL0NA">What is the area of a Squircle?</a>, Youtube video (2021).
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Squircle.html">Squircle</a>
%F Equals sqrt(2)*Pi/agm(1,sqrt(2)) (arithmetic-geometric mean).
%F Equals 8*Gamma(5/4)^2/sqrt(Pi). - _Peter Luschny_, Sep 02 2021
%e 3+1/(1+1/(2+1/(2+1/(2+...)))).
%p convert(8*GAMMA(5/4)^2/sqrt(Pi), confrac, 84); # _Peter Luschny_, Sep 02 2021
%t ContinuedFraction[Pi^(3/2)/Gamma[3/4]^2, 84] (* _Michael De Vlieger_, Sep 01 2021 *)
%o (PARI) contfrac(Pi^1.5/gamma(3/4)^2) \\ _Michel Marcus_, Sep 02 2021
%Y Cf. A175576 for decimal expansion.
%K nonn,cofr
%O 0,1
%A _Adam Filinovich_, Sep 01 2021