|
|
A060441
|
|
Triangle T(n,k), n >= 0, in which n-th row (for n >= 3) lists prime factors of Fibonacci(n) (see A000045), with repetition.
|
|
4
|
|
|
0, 1, 1, 2, 3, 5, 2, 2, 2, 13, 3, 7, 2, 17, 5, 11, 89, 2, 2, 2, 2, 3, 3, 233, 13, 29, 2, 5, 61, 3, 7, 47, 1597, 2, 2, 2, 17, 19, 37, 113, 3, 5, 11, 41, 2, 13, 421, 89, 199, 28657, 2, 2, 2, 2, 2, 3, 3, 7, 23, 5, 5, 3001, 233, 521, 2, 17, 53, 109, 3, 13, 29, 281, 514229, 2, 2, 2, 5, 11, 31, 61
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Rows have irregular lengths.
|
|
LINKS
|
|
|
EXAMPLE
|
0; 1; 1; 2; 3; 5; 2,2,2; 13; 3,7; 2,17; ...
|
|
MAPLE
|
with(combinat); A060441 := n->ifactor(fibonacci(n));
with(numtheory): with(combinat): for i from 3 to 50 do for j from 1 to nops(ifactors(fibonacci(i))[2]) do for k from 1 to ifactors(fibonacci(i))[2][j][2] do printf(`%d, `, ifactors(fibonacci(i))[2][j][1]) od: od: od:
|
|
PROG
|
(Haskell)
a060441 n k = a060441_tabf !! (n-1) !! (k-1)
a060441_row n = a060441_tabf !! (n-1)
a060441_tabf = [0] : [1] : [1] : map a027746_row (drop 3 a000045_list)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,tabf,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|