|
|
A365424
|
|
a(1) = 1, a(3^k) = 3 for k >= 1, and for any other n, a(n) is the last prime that is selected when the value of A356867(n) is computed with a greedy algorithm.
|
|
2
|
|
|
1, 2, 3, 5, 2, 2, 2, 2, 3, 7, 7, 5, 5, 5, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 2, 2, 3, 11, 11, 7, 11, 11, 7, 7, 7, 5, 7, 7, 5, 7, 7, 5, 5, 5, 2, 7, 7, 5, 5, 5, 2, 5, 2, 2, 7, 5, 5, 5, 2, 2, 5, 2, 2, 7, 5, 5, 5, 2, 2, 5, 2, 2, 5, 2, 2, 5, 2, 2, 2, 2, 3, 13, 13, 11, 13, 13, 11, 13, 13, 7, 13, 11, 11, 13, 11, 11, 11, 11, 7
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Apparently the analogous sequence for Doudna variant D(2) (A005940) is 1 followed by A000040(A290251(n-1)) for n >= 2: 1, 2, 3, 2, 5, 3, 3, 2, 7, 5, 5, 3, 5, 3, 3, 2, 11, 7, 7, 5, 7, etc.
|
|
LINKS
|
|
|
FORMULA
|
a(1) = 1, and for n > 1, if n is of the form 3^k, then a(n) = 3, otherwise a(n) = A356867(n) / A356867(A365459(n)).
|
|
PROG
|
(PARI)
up_to = (3^10);
A365424list(up_to) = { my(v=vector(up_to), pv=vector(up_to), met=Map(), h=0, ak); for(i=1, #v, if(1==sumdigits(i, 3), v[i] = i; pv[i] = if(1==i, i, 3); h = i, ak = v[i-h]; forprime(p=2, , if(3!=p && !mapisdefined(met, p*ak), v[i] = p*ak; pv[i] = p; break))); mapput(met, v[i], i)); (pv); };
v365424 = A365424list(up_to);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|