login
A255913
Decimal expansion of A such that y = A*x^2 cuts the first quadrant of the unit circle into two equal areas.
0
2, 3, 5, 2, 2, 3, 0, 1, 5, 3, 9, 1, 5, 8, 0, 7, 6, 3, 4, 8, 5, 2, 7, 7, 2, 5, 1, 2, 1, 1, 7, 5, 4, 1, 5, 8, 0, 7, 3, 9, 2, 1, 5, 4, 2, 4, 8, 8, 0, 2, 4, 3, 0, 8, 9, 2, 3, 5, 7, 8, 2, 9, 7, 7, 4, 2, 8, 1, 3, 7, 8, 6, 8, 5, 9, 3, 7, 7, 0, 4, 8, 9, 3, 4, 0, 0, 4, 6, 7, 7, 6, 4, 0, 0, 0, 9, 4, 9, 8, 3, 6, 4, 7, 1, 4, 2, 4, 1
OFFSET
1,1
COMMENTS
A is found by solving the equation A*x^3/3 = Pi/4 - arcsin(x), where x = sqrt( (sqrt(4*A^2+1)-1)/(2*A^2) ).
EXAMPLE
2.352230153915807634852772512117541580739215424880243089235782...
PROG
(PARI) solve(A = 2, 3, A/3*(sqrt((sqrt(4*A^2+1)-1)/(2*A^2)))^3 - Pi/4 + asin(sqrt((sqrt(4*A^2+1)-1)/(2*A^2)))) \\ Michel Marcus, Mar 11 2015
CROSSREFS
Sequence in context: A205387 A365424 A060441 * A065996 A133906 A317358
KEYWORD
nonn,cons,easy
AUTHOR
Derek Orr, Mar 10 2015
STATUS
approved