login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133906
Least number m such that binomial(n+m, m) mod m = 1.
5
2, 3, 5, 2, 2, 7, 9, 2, 2, 3, 3, 2, 2, 17, 17, 2, 2, 3, 3, 2, 2, 23, 25, 2, 2, 4, 3, 2, 2, 31, 37, 2, 2, 8, 8, 2, 2, 3, 41, 2, 2, 4, 4, 2, 2, 3, 3, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 4, 4, 2, 2, 67, 3, 2, 2, 44, 44, 2, 2, 16, 16, 2, 2, 3, 4, 2, 2, 5, 5, 2, 2, 3, 3, 2, 2, 89, 9, 2, 2, 3, 3, 2, 2, 97, 97, 2, 2, 7
OFFSET
1,1
LINKS
EXAMPLE
a(1)=2, since binomial(1+2, 2) mod 2 = 3 mod 2 = 1 and 2 is the minimal number with this property.
a(7)=9 because of binomial(7+9, 9) = 11440 = 1271*9 + 1, but binomial(7+k, k) mod k <> 1 for all numbers < 9.
MATHEMATICA
Table[Block[{m = 1}, While[Mod[Binomial[n + m, m], m] != 1, m++]; m], {n, 98}] (* Michael De Vlieger, Jul 30 2018 *)
PROG
(PARI) a(n) = {my(m = 1, ok = 0); until (ok, if (binomial(n+m, m) % m == 1, ok = 1, m++); ); return (m); } \\ Michel Marcus, Jul 15 2013
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, Oct 20 2007
STATUS
approved