The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A255911 a(n) is the smallest natural number such that A002182(n) = a(n) * A002182(n - i) for some i > 0, where A002182 is the sequence of highly composite numbers. 1
 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 7, 7, 2, 2, 2, 3, 2, 2, 2, 5, 11, 3, 2, 2, 3, 2, 2, 2, 5, 2, 3, 2, 2, 13, 13, 2, 2, 2, 5, 2, 3, 2, 2, 3, 2, 2, 2, 3, 17, 2, 17, 2, 3, 2, 2, 3, 2, 2, 2, 3, 19, 2, 2, 2, 3, 2, 19, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 7, 23, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS Each highly composite number hcn(n) (except the first) in the sequence A002182 is a product of a relatively small natural number and a preceding highly composite number hcn(n - i) in A002182. The first nonprime term in A255911 is a(698) = 10. LINKS Peter McGavin, Table of n, a(n) for n = 2..1000 EXAMPLE In A002182, hcn(5),hcn(6),hcn(7) = 12,24,36. We have hcn(6) = 2 * hcn(5), therefore a(6) = 2. hcn(6) is not a divisor of hcn(7), but hcn(7) = 3 * hcn(5), therefore a(7) = 3. MAPLE # Uses "http://oeis.org/wiki/User:R._J._Mathar/transforms3" to read a b-file read("transforms3"); hcn:=BFILETOLIST("b002182.txt"): a:=[]: for i from 2 to nops(hcn) do \   j := i - 1: \   while (j > 0 and hcn[i] mod hcn[j] <> 0) do \     j := j - 1:   end do: \   a := [op(a), hcn[i] / hcn[j]]: \ end do: a; # Peter McGavin, Mar 15 2015 PROG (C) /* program fragment */ /* All variables are int */ /* Given the sequence A002182 already is in hcn[0..n-1] */ for (i = 1; i < n; i++) {    for (j = i - 1; j >= 0 && hcn[i] % hcn[j] != 0; --j)      /* do nothing */ ;    printf (", %d", hcn[i] / hcn[j]); } /* Peter McGavin, Mar 10 2015 */ (PARI) lista(nn) = {v = readvec("c:/gp/bfiles/b002182.txt"); for (n=2, nn, k = 0; for (i=1, n-1, if (type(kv = v[n]/v[i]) == "t_INT", if (k==0, k = kv, k = min(k, kv)); ); ); print1(k, ", "); ); } \\ Michel Marcus, Mar 11 2015 (Python) from sympy import divisor_count A002182_list, A255911_list, count, m = [], [], 0, 0 for i in range(1, 10**6): ....d = divisor_count(i) ....if d > m: ........m = d ........A002182_list.append(i) ........for j in range(count-1, -1, -1): ............q, r = divmod(i, A002182_list[j]) ............if not r: ................A255911_list.append(q) ................break ........count += 1 # Chai Wah Wu, Mar 23 2015 CROSSREFS Cf. A002182. Sequence in context: A270516 A099318 A187128 * A091382 A127808 A127809 Adjacent sequences:  A255908 A255909 A255910 * A255912 A255913 A255914 KEYWORD nonn AUTHOR Peter McGavin, Mar 10 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 30 18:12 EDT 2020. Contains 337440 sequences. (Running on oeis4.)