login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255911
a(n) is the smallest natural number such that A002182(n) = a(n) * A002182(n - i) for some i > 0, where A002182 is the sequence of highly composite numbers.
1
2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 2, 2, 7, 7, 2, 2, 2, 3, 2, 2, 2, 5, 11, 3, 2, 2, 3, 2, 2, 2, 5, 2, 3, 2, 2, 13, 13, 2, 2, 2, 5, 2, 3, 2, 2, 3, 2, 2, 2, 3, 17, 2, 17, 2, 3, 2, 2, 3, 2, 2, 2, 3, 19, 2, 2, 2, 3, 2, 19, 2, 5, 2, 2, 2, 3, 2, 2, 2, 2, 7, 23, 7
OFFSET
2,1
COMMENTS
Each highly composite number hcn(n) (except the first) in the sequence A002182 is a product of a relatively small natural number and a preceding highly composite number hcn(n - i) in A002182.
The first nonprime term in A255911 is a(698) = 10.
LINKS
EXAMPLE
In A002182, hcn(5),hcn(6),hcn(7) = 12,24,36.
We have hcn(6) = 2 * hcn(5), therefore a(6) = 2.
hcn(6) is not a divisor of hcn(7), but hcn(7) = 3 * hcn(5), therefore a(7) = 3.
MAPLE
# Uses "http://oeis.org/wiki/User:R._J._Mathar/transforms3" to read a b-file
read("transforms3");
hcn:=BFILETOLIST("b002182.txt"):
a:=[]:
for i from 2 to nops(hcn) do \
j := i - 1: \
while (j > 0 and hcn[i] mod hcn[j] <> 0) do \
j := j - 1:
end do: \
a := [op(a), hcn[i] / hcn[j]]: \
end do:
a;
# Peter McGavin, Mar 15 2015
PROG
(C)
/* program fragment */
/* All variables are int */
/* Given the sequence A002182 already is in hcn[0..n-1] */
for (i = 1; i < n; i++) {
for (j = i - 1; j >= 0 && hcn[i] % hcn[j] != 0; --j)
/* do nothing */ ;
printf (", %d", hcn[i] / hcn[j]);
}
/* Peter McGavin, Mar 10 2015 */
(PARI) lista(nn) = {v = readvec("c:/gp/bfiles/b002182.txt"); for (n=2, nn, k = 0; for (i=1, n-1, if (type(kv = v[n]/v[i]) == "t_INT", if (k==0, k = kv, k = min(k, kv)); ); ); print1(k, ", "); ); } \\ Michel Marcus, Mar 11 2015
(Python)
from sympy import divisor_count
A002182_list, A255911_list, count, m = [], [], 0, 0
for i in range(1, 10**6):
....d = divisor_count(i)
....if d > m:
........m = d
........A002182_list.append(i)
........for j in range(count-1, -1, -1):
............q, r = divmod(i, A002182_list[j])
............if not r:
................A255911_list.append(q)
................break
........count += 1 # Chai Wah Wu, Mar 23 2015
CROSSREFS
Cf. A002182.
Sequence in context: A270516 A099318 A187128 * A091382 A127808 A127809
KEYWORD
nonn
AUTHOR
Peter McGavin, Mar 10 2015
STATUS
approved