Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 17 2023 12:10:21
%S 1,2,3,5,2,2,2,2,3,7,7,5,5,5,2,5,2,2,5,2,2,5,2,2,2,2,3,11,11,7,11,11,
%T 7,7,7,5,7,7,5,7,7,5,5,5,2,7,7,5,5,5,2,5,2,2,7,5,5,5,2,2,5,2,2,7,5,5,
%U 5,2,2,5,2,2,5,2,2,5,2,2,2,2,3,13,13,11,13,13,11,13,13,7,13,11,11,13,11,11,11,11,7
%N a(1) = 1, a(3^k) = 3 for k >= 1, and for any other n, a(n) is the last prime that is selected when the value of A356867(n) is computed with a greedy algorithm.
%C Apparently the analogous sequence for Doudna variant D(2) (A005940) is 1 followed by A000040(A290251(n-1)) for n >= 2: 1, 2, 3, 2, 5, 3, 3, 2, 7, 5, 5, 3, 5, 3, 3, 2, 11, 7, 7, 5, 7, etc.
%H Antti Karttunen, <a href="/A365424/b365424.txt">Table of n, a(n) for n = 1..59049</a>
%F a(1) = 1, and for n > 1, if n is of the form 3^k, then a(n) = 3, otherwise a(n) = A356867(n) / A356867(A365459(n)).
%o (PARI)
%o up_to = (3^10);
%o A365424list(up_to) = { my(v=vector(up_to),pv=vector(up_to),met=Map(),h=0,ak); for(i=1,#v,if(1==sumdigits(i,3), v[i] = i; pv[i] = if(1==i,i,3); h = i, ak = v[i-h]; forprime(p=2,,if(3!=p && !mapisdefined(met,p*ak), v[i] = p*ak; pv[i] = p; break))); mapput(met,v[i],i)); (pv); };
%o v365424 = A365424list(up_to);
%o A365424(n) = v365424[n];
%Y Cf. A000040, A000244 (positions of the initial 1 and all 3's), A053735, A356867, A365459.
%Y Cf. also A005940, A290251.
%K nonn
%O 1,2
%A _Antti Karttunen_, Sep 17 2023