|
|
A269701
|
|
Cyclic Fibonacci sequence, restricted to maximum=6
|
|
1
|
|
|
0, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 6, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 6, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 6, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 6, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 6, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 6, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 6, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1, 6, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Sequence has a period of 24.
|
|
LINKS
|
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
|
|
FORMULA
|
F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1 and F(n) = F(n-1) + F(n-2) - 6 if F(n-1) + F(n-2) > 6.
G.f.: ( -x *(1 +x +2*x^2 +3*x^3 +5*x^4 +2*x^5 +x^6 +3*x^7 +4*x^8 +x^9 +5*x^10 +6*x^11 +5*x^12 +5*x^13 +4*x^14 +3*x^15 +x^16 +4*x^17 +5*x^18 +3*x^19 +2*x^20 +5*x^21 +x^22 +6*x^23) ) / ( (x-1) *(1+x+x^2) *(1+x) *(1-x+x^2) *(1+x^2) *(x^4-x^2+1) *(1+x^4) *(x^8-x^4+1) ). - R. J. Mathar, Apr 16 2016
|
|
EXAMPLE
|
For n = 6; F(5) + F(4) equals 8 then F(6) = 8 - 6 = 2.
|
|
MAPLE
|
option remember;
if n <=5 then
combinat[fibonacci](n) ;
else
a := procname(n-1)+procname(n-2) ;
if a > 6 then
a-6;
else
a;
end if;
end if;
|
|
MATHEMATICA
|
Table[Mod[Fibonacci[n], 6], {n, 100}] /. 0 -> 6 (* Alonso del Arte, Mar 28 2016 *)
PadRight[{0}, 120, {6, 1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 6, 5, 5, 4, 3, 1, 4, 5, 3, 2, 5, 1}] (* Harvey P. Dale, May 13 2019 *)
|
|
PROG
|
(Erlang)
fibocy(1) -> 1;
fibocy(2) -> 1;
fibocy(N) when N > 1 ->
Tmp = fibocy(N-1) + fibocy(N-2),
if Tmp > 6 -> Tmp - 6;
true -> Tmp
end.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,less
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|