Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jan 07 2025 01:59:29
%S 0,1,1,2,3,5,2,2,2,13,3,7,2,17,5,11,89,2,2,2,2,3,3,233,13,29,2,5,61,3,
%T 7,47,1597,2,2,2,17,19,37,113,3,5,11,41,2,13,421,89,199,28657,2,2,2,2,
%U 2,3,3,7,23,5,5,3001,233,521,2,17,53,109,3,13,29,281,514229,2,2,2,5,11,31,61
%N Triangle T(n,k), n >= 0, in which n-th row (for n >= 3) lists prime factors of Fibonacci(n) (see A000045), with repetition.
%C Rows have irregular lengths.
%C T(n,k) = A027746(A000045(n),k), k = 1 .. A038575(n). - _Reinhard Zumkeller_, Aug 30 2014
%H Blair Kelly, <a href="http://mersennus.net/fibonacci//">Fibonacci and Lucas factorizations</a>
%e Triangle begins:
%e 0;
%e 1;
%e 1;
%e 2;
%e 3;
%e 5;
%e 2, 2, 2;
%e 13;
%e 3, 7;
%e 2, 17;
%e ...
%p with(combinat); A060441 := n->ifactor(fibonacci(n));
%p with(numtheory): with(combinat): for i from 3 to 50 do for j from 1 to nops(ifactors(fibonacci(i))[2]) do for k from 1 to ifactors(fibonacci(i))[2][j][2] do printf(`%d,`, ifactors(fibonacci(i))[2][j][1]) od: od: od:
%o (Haskell)
%o a060441 n k = a060441_tabf !! (n-1) !! (k-1)
%o a060441_row n = a060441_tabf !! (n-1)
%o a060441_tabf = [0] : [1] : [1] : map a027746_row (drop 3 a000045_list)
%o -- _Reinhard Zumkeller_, Aug 30 2014
%Y A000045, A060442.
%Y Cf. A038575 (row lengths), A027746, A001222.
%K nonn,tabf,easy,changed
%O 0,4
%A _N. J. A. Sloane_, Apr 07 2001
%E More terms from _James A. Sellers_, Apr 09 2001