|
|
A022307
|
|
Number of distinct prime factors of n-th Fibonacci number.
|
|
30
|
|
|
0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 3, 3, 1, 3, 2, 4, 3, 2, 1, 4, 2, 2, 4, 4, 1, 5, 2, 4, 3, 2, 3, 5, 3, 3, 3, 6, 2, 5, 1, 5, 5, 3, 1, 6, 3, 5, 3, 4, 2, 6, 4, 6, 5, 3, 2, 8, 2, 3, 5, 6, 3, 5, 3, 5, 5, 7, 2, 8, 2, 4, 5, 5, 4, 6, 2, 9, 7, 3, 1, 9, 4, 3, 4, 9, 2, 10, 4, 6, 4, 2, 6, 9, 4, 5, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,9
|
|
COMMENTS
|
Although every prime divides some Fibonacci number, this is not true for the Lucas numbers. Exactly 1/3 of all primes do not divide any Lucas number. See Lagarias and Moree for more details. - Jonathan Vos Post, Dec 06 2006
First occurrence of k: 0, 3, 8, 15, 20, 30, 40, 70, 60, 80, 90, 140, 176, 120, 168, 180, 324, 252, 240, 378, ..., . - Robert G. Wilson v, Dec 10 2006 [Other than 0, this is sequence A060320. - Jon E. Schoenfield, Dec 30 2016]
If k properly divides n then a(n) >= a(k) + 1, except for a(6) = a(3) = 1. - Robert Israel, Aug 18 2015
|
|
REFERENCES
|
Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, The Fibonacci Association, 1972, pages 1-8.
|
|
LINKS
|
|
|
FORMULA
|
|
|
MATHEMATICA
|
Table[Length[FactorInteger[Fibonacci[n]]], {n, 150}]
|
|
PROG
|
(Haskell)
a022307 n = if n == 0 then 0 else a001221 $ a000045 n
(Magma) [0] cat [#PrimeDivisors(Fibonacci(n)): n in [1..100]]; // Vincenzo Librandi, Jul 26 2017
|
|
CROSSREFS
|
Cf. A038575 (number of prime factors, counting multiplicity), A086597 (number of primitive prime factors).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|