login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022307 Number of distinct prime factors of n-th Fibonacci number. 30
0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 3, 3, 1, 3, 2, 4, 3, 2, 1, 4, 2, 2, 4, 4, 1, 5, 2, 4, 3, 2, 3, 5, 3, 3, 3, 6, 2, 5, 1, 5, 5, 3, 1, 6, 3, 5, 3, 4, 2, 6, 4, 6, 5, 3, 2, 8, 2, 3, 5, 6, 3, 5, 3, 5, 5, 7, 2, 8, 2, 4, 5, 5, 4, 6, 2, 9, 7, 3, 1, 9, 4, 3, 4, 9, 2, 10, 4, 6, 4, 2, 6, 9, 4, 5, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,9
COMMENTS
Although every prime divides some Fibonacci number, this is not true for the Lucas numbers. Exactly 1/3 of all primes do not divide any Lucas number. See Lagarias and Moree for more details. - Jonathan Vos Post, Dec 06 2006
First occurrence of k: 0, 3, 8, 15, 20, 30, 40, 70, 60, 80, 90, 140, 176, 120, 168, 180, 324, 252, 240, 378, ..., . - Robert G. Wilson v, Dec 10 2006 [Other than 0, this is sequence A060320. - Jon E. Schoenfield, Dec 30 2016]
Row lengths of table A060442. - Reinhard Zumkeller, Aug 30 2014
If k properly divides n then a(n) >= a(k) + 1, except for a(6) = a(3) = 1. - Robert Israel, Aug 18 2015
REFERENCES
Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, The Fibonacci Association, 1972, pages 1-8.
LINKS
Amiram Eldar, Table of n, a(n) for n = 0..1408 (terms 0..1000 from T. D. Noe derived from Kelly's data)
J. C. Lagarias, The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math., 118. No. 2, (1985), 449-461.
J. C. Lagarias, Errata to: The set of primes dividing the Lucas numbers has density 2/3, Pacific J. Math., 162, No. 2, (1994), 393-396.
Hisanori Mishima, WIFC (World Integer Factorization Center), Fibonacci numbers (n = 1 to 100, n = 101 to 200, n = 201 to 300, n = 301 to 400, n = 401 to 480).
Pieter Moree, Counting Divisors of Lucas Numbers, Pacific J. Math, Vol. 186, No. 2, 1998, pp. 267-284.
Eric Weisstein's World of Mathematics, Fibonacci Number
FORMULA
a(n) = Sum{d|n} A086597(d), Mobius transform of A086597.
a(n) = A001221(A000045(n)) = omega(F(n)). - Jonathan Vos Post, Dec 06 2006
MATHEMATICA
Table[Length[FactorInteger[Fibonacci[n]]], {n, 150}]
PROG
(PARI) a(n)=omega(fibonacci(n)) \\ Charles R Greathouse IV, Feb 03 2014
(Haskell)
a022307 n = if n == 0 then 0 else a001221 $ a000045 n
-- Reinhard Zumkeller, Aug 30 2014
(Magma) [0] cat [#PrimeDivisors(Fibonacci(n)): n in [1..100]]; // Vincenzo Librandi, Jul 26 2017
CROSSREFS
Cf. A038575 (number of prime factors, counting multiplicity), A086597 (number of primitive prime factors).
Cf. A060442, A086598 (omega(Lucas(n))).
Cf. A060320. - Jon E. Schoenfield, Dec 30 2016
Sequence in context: A238529 A374415 A195150 * A029413 A237523 A339812
KEYWORD
nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 10 23:44 EDT 2024. Contains 375795 sequences. (Running on oeis4.)