login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022308 a(n) = a(n-1) + a(n-2) + 1 for n>1, a(0)=0, a(1)=3. 5
0, 3, 4, 8, 13, 22, 36, 59, 96, 156, 253, 410, 664, 1075, 1740, 2816, 4557, 7374, 11932, 19307, 31240, 50548, 81789, 132338, 214128, 346467, 560596, 907064, 1467661, 2374726, 3842388, 6217115, 10059504, 16276620, 26336125, 42612746, 68948872, 111561619 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,0,-1).

FORMULA

G.f.: x*(3-2*x) / (x^3-2*x+1).

a(n) = 2*A000045(n) + A000045(n+2) - 1 = A000285(n)-1.

a(n) = 2*a(n-1) - a(n-3) for n>=3. - Ron Knott, Aug 25 2006

a(n) = (3*A000032(n) - A000045(n) - 2)/2. - Vladimir Joseph Stephan Orlovsky, Feb 02 2012

a(n) = 4*F(n) + F(n-1) - 1, where F = A000045. - Bruno Berselli, Feb 20 2017

a(n) = (-10 + (5-7*sqrt(5))*((1-sqrt(5))/2)^n + ((1+sqrt(5))/2)^n*(5+7*sqrt(5))) / 10. - Colin Barker, Feb 20 2017

MAPLE

with(combinat): seq(fibonacci(n)+fibonacci(n+5)-1, n=-2..30); # Zerinvary Lajos, Feb 01 2008

MATHEMATICA

Table[(3 LucasL[n] - Fibonacci[n] - 2)/2, {n, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)

LinearRecurrence[{2, 0, -1}, {0, 3, 4}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 02 2012 *)

CoefficientList[Series[x (3 - 2 x)/(x^3 - 2 x + 1), {x, 0, 20}], x] (* Eric W. Weisstein, Mar 26 2018 *)

PROG

(PARI) concat(0, Vec(x*(3-2*x)/(x^3-2*x+1) + O(x^50))) \\ Colin Barker, Feb 20 2017

(PARI) a(n) = if(n==0, 0, if(n==1, 3, a(n-1)+a(n-2)+1)) \\ Felix Fröhlich, Mar 26 2018

CROSSREFS

Cf. A000032, A000045, A000285, A122195.

Sequence in context: A327466 A049720 A078172 * A278137 A206268 A178749

Adjacent sequences:  A022305 A022306 A022307 * A022309 A022310 A022311

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 07:03 EST 2019. Contains 329052 sequences. (Running on oeis4.)