|
|
A238529
|
|
a(0) = a(1) = 0, and for n > 1, a(n) = number of iterations of A238525 (n modulo sopfr(n)) needed to reach either 0 or 1. Here sopfr(n) is the sum of the prime factors of n, with multiplicity, A001414.
|
|
5
|
|
|
0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 2, 3, 2, 2, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 2, 1, 1, 3, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 3, 3, 2, 2, 2, 1, 2, 3, 3, 1, 1, 2, 2, 2, 2, 1, 3, 2, 2, 3, 2, 2, 2, 1, 2, 3, 2, 1, 3, 1, 3, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,9
|
|
COMMENTS
|
Previous name was: Recursive depth of n modulo sopfr(n), where sopfr(n) is the sum of the prime factors of n, with multiplicity.
Indices of records are 0, 2, 8, 22, 166, ... (A238530) - David A. Corneth & Antti Karttunen, Oct 20 2017
|
|
LINKS
|
Antti Karttunen, Table of n, a(n) for n = 0..16384
|
|
FORMULA
|
a(0) = a(1) = 0; for n > 1, a(n) = 1 + a(A238525(n)). - Antti Karttunen, Oct 20 2017
|
|
EXAMPLE
|
a(2) = 1, because 2 mod sopfr(2) = 2 mod 2 = 0, and further recursion (0 mod sopfr(0)) is undefined.
a(8) = 2, because 8 mod sopfr(8) = 8 mod 6 = 2, and 2 mod sopfr(2) is defined as above, giving 8 a recursive depth of 2.
|
|
MATHEMATICA
|
Array[-1 + Length@ NestWhileList[Mod[#, Total@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger@ #]] &, #, # > 1 &] &, 105, 0] (* Michael De Vlieger, Oct 20 2017 *)
|
|
PROG
|
(Sage)
def a(n):
d = 0
while n>1:
n = n % sum([f[0]*f[1] for f in factor(n)])
d = d+1
return d
# Ralf Stephan, Mar 09 2014
(PARI)
A001414(n) = { my(f=factor(n)); sum(k=1, matsize(f)[1], f[k, 1]*f[k, 2]); };
A238525(n) = (n%A001414(n));
A238529(n) = if(n<=1, 0, 1+A238529(A238525(n))); \\ Antti Karttunen, Oct 20 2017
|
|
CROSSREFS
|
Cf. A001414, A238525, A238530.
Sequence in context: A105971 A280314 A080354 * A195150 A022307 A029413
Adjacent sequences: A238526 A238527 A238528 * A238530 A238531 A238532
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
J. Stauduhar, Feb 28 2014
|
|
EXTENSIONS
|
More terms from Ralf Stephan, Mar 09 2014
Terms a(0) = a(1) = 0 prepended and name changed by Antti Karttunen, Oct 20 2017
|
|
STATUS
|
approved
|
|
|
|