The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238529 a(0) = a(1) = 0, and for n > 1, a(n) = number of iterations of A238525 (n modulo sopfr(n)) needed to reach either 0 or 1. Here sopfr(n) is the sum of the prime factors of n, with multiplicity, A001414. 5
 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 2, 3, 2, 2, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 1, 2, 2, 2, 2, 1, 1, 3, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 3, 3, 2, 2, 2, 1, 2, 3, 3, 1, 1, 2, 2, 2, 2, 1, 3, 2, 2, 3, 2, 2, 2, 1, 2, 3, 2, 1, 3, 1, 3, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS Previous name was: Recursive depth of n modulo sopfr(n), where sopfr(n) is the sum of the prime factors of n, with multiplicity. Indices of records are 0, 2, 8, 22, 166, ... (A238530) - David A. Corneth & Antti Karttunen, Oct 20 2017 LINKS Antti Karttunen, Table of n, a(n) for n = 0..16384 FORMULA a(0) = a(1) = 0; for n > 1, a(n) = 1 + a(A238525(n)). - Antti Karttunen, Oct 20 2017 EXAMPLE a(2) = 1, because 2 mod sopfr(2) = 2 mod 2 = 0, and further recursion (0 mod sopfr(0)) is undefined. a(8) = 2, because 8 mod sopfr(8) = 8 mod 6 = 2, and 2 mod sopfr(2) is defined as above, giving 8 a recursive depth of 2. MATHEMATICA Array[-1 + Length@ NestWhileList[Mod[#, Total@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger@ #]] &, #, # > 1 &] &, 105, 0] (* Michael De Vlieger, Oct 20 2017 *) PROG (Sage) def a(n):     d = 0     while n>1:         n = n % sum([f[0]*f[1] for f in factor(n)])         d = d+1    return d # Ralf Stephan, Mar 09 2014 (PARI) A001414(n) = { my(f=factor(n)); sum(k=1, matsize(f)[1], f[k, 1]*f[k, 2]); }; A238525(n) = (n%A001414(n)); A238529(n) = if(n<=1, 0, 1+A238529(A238525(n))); \\ Antti Karttunen, Oct 20 2017 CROSSREFS Cf. A001414, A238525, A238530. Sequence in context: A105971 A280314 A080354 * A195150 A022307 A029413 Adjacent sequences:  A238526 A238527 A238528 * A238530 A238531 A238532 KEYWORD nonn AUTHOR J. Stauduhar, Feb 28 2014 EXTENSIONS More terms from Ralf Stephan, Mar 09 2014 Terms a(0) = a(1) = 0 prepended and name changed by Antti Karttunen, Oct 20 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 11:38 EDT 2022. Contains 354096 sequences. (Running on oeis4.)