login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090076
a(n) = prime(n)*prime(n+2).
21
10, 21, 55, 91, 187, 247, 391, 551, 713, 1073, 1271, 1591, 1927, 2279, 2773, 3233, 3953, 4331, 4891, 5609, 6059, 7031, 8051, 8989, 9991, 10807, 11227, 12091, 13843, 14803, 17399, 18209, 20413, 20989, 23393, 24613, 26219, 28199, 29893, 31313
OFFSET
1,1
COMMENTS
Subsequence of A192133. - Reinhard Zumkeller, Jun 26 2011
For n > 1: A078898(a(n)) = 4. - Reinhard Zumkeller, Apr 06 2015
LINKS
C. Cobeli and A. Zaharescu, A game with divisors and absolute differences of exponents, Journal of Difference Equations and Applications, Vol. 20, #11 (2014) pp. 1489-1501, DOI: 10.1080/10236198.2014.940337. Also available as arXiv:1411.1334 [math.NT], 2014.
EXAMPLE
a(5) = prime(5)*prime(7) = 11*17 = 187.
MATHEMATICA
Table[Prime[n] Prime[n + 2], {n, 1, 40}] (* Robert G. Wilson v, Jan 22 2004 *)
Last[#]First[#]&/@Partition[Prime[Range[50]], 3, 1] (* Harvey P. Dale, May 08 2013 *)
PROG
(MuPAD) ithprime(i)*ithprime(i+2) $ i = 1..40 // Zerinvary Lajos, Feb 26 2007
(Sage)
def prime_gaps(n):
primegaps = []
nprimes = primes_first_n(n+1)
for i in range(2, n+1):
primegaps.append(nprimes[i]*nprimes[i-2])
return primegaps
print(prime_gaps(60)) # Zerinvary Lajos, Jul 08 2008
(Haskell)
a090076 n = a090076_list !! (n-1)
a090076_list = zipWith (*) a000040_list $ drop 2 a000040_list
-- Reinhard Zumkeller, Dec 17 2014
CROSSREFS
Subset of the squarefree semiprimes, A006881. Cf. A006094, A090090.
Cf. A078898.
Sequence in context: A042309 A215757 A048697 * A231966 A156592 A045973
KEYWORD
easy,nonn
AUTHOR
Felix Tubiana, Jan 21 2004
EXTENSIONS
Extended by Robert G. Wilson v, Jan 22 2004
STATUS
approved