login
A090079
In binary expansion of n: reduce contiguous blocks of 0's to 0 and contiguous blocks of 1's to 1.
10
0, 1, 2, 1, 2, 5, 2, 1, 2, 5, 10, 5, 2, 5, 2, 1, 2, 5, 10, 5, 10, 21, 10, 5, 2, 5, 10, 5, 2, 5, 2, 1, 2, 5, 10, 5, 10, 21, 10, 5, 10, 21, 42, 21, 10, 21, 10, 5, 2, 5, 10, 5, 10, 21, 10, 5, 2, 5, 10, 5, 2, 5, 2, 1, 2, 5, 10, 5, 10, 21, 10, 5, 10, 21, 42, 21, 10, 21, 10, 5, 10, 21, 42, 21
OFFSET
0,3
COMMENTS
a(a(n))=a(n); a(n)=A090078(A090077(n))=A090077(A090078(n)).
All terms are without consecutive equal binary digits: a(A000975(n)) = A000975(n) and a(m) <> A000975(n) for m < A000975(n). - Reinhard Zumkeller, Feb 16 2013
FORMULA
Conjecture: a(n) = (2^(A005811(n)+1) + (1-(-1)^n)/2 - 2)/3. - Velin Yanev, Dec 12 2016
EXAMPLE
100 -> '1100100' -> [11][00][1][00] -> [1][0][1][0] -> '1010' ->
10=a(100).
MATHEMATICA
Table[FromDigits[#, 2] &@ Map[First, Split@ IntegerDigits[n, 2]], {n, 0, 83}] (* Michael De Vlieger, Dec 12 2016 *)
FromDigits[Split[IntegerDigits[#, 2]][[All, 1]], 2]&/@Range[0, 90] (* Harvey P. Dale, Oct 10 2017 *)
PROG
(Haskell)
a090079 = foldr (\b v -> 2 * v + b) 0 . map head . group . a030308_row
-- Reinhard Zumkeller, Feb 16 2013
(Python)
from itertools import groupby
def a(n): return int("".join(k for k, g in groupby(bin(n)[2:])), 2)
print([a(n) for n in range(84)]) # Michael S. Branicky, Jul 23 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Nov 20 2003
STATUS
approved