OFFSET
1,4
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
FORMULA
T(n,k) = fibonacci(2n-2k-1) if k<n; T(n,n)=fibonacci(2n-3).
G.f.: G(t,z) = t*z*(1-2*t*z)/(1-3*t*z+t^2*z^2)+t*z^2*(1-z)/((1-t*z)* (1-3*z+z^2)).
EXAMPLE
T(4,2)=2 because we have UUDDUUDD and UUDDUDUD, where U=(1,1) and D=(1,-1).
Triangle starts:
1;
1,1;
2,1,2;
5,2,1,5;
13,5,2,1,13;
34,13,5,2,1,34;
MAPLE
with(combinat): T:=proc(n, k) if k<n then fibonacci(2*n-2*k-1) elif n=k then fibonacci(2*n-3) else 0 fi end: for n from 1 to 13 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form
MATHEMATICA
T[n_, k_] := If[k < n, Fibonacci[2*n - 2*k - 1], Fibonacci[2*n - 3]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* G. C. Greubel, Oct 22 2017 *)
PROG
(PARI) for(n=1, 10, for(k=1, n, print1(if(k<n, fibonacci(2*n-2*k-1), fibonacci(2*n-3)), ", "))) \\ G. C. Greubel, Oct 22 2017
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 03 2006
STATUS
approved