login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121487
Triangle read by rows: T(n,k) is the number of nondecreasing Dyck paths of semilength n and having abscissa of first return equal to 2k (1<=k<=n). A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.
1
1, 1, 1, 2, 1, 2, 5, 2, 1, 5, 13, 5, 2, 1, 13, 34, 13, 5, 2, 1, 34, 89, 34, 13, 5, 2, 1, 89, 233, 89, 34, 13, 5, 2, 1, 233, 610, 233, 89, 34, 13, 5, 2, 1, 610, 1597, 610, 233, 89, 34, 13, 5, 2, 1, 1597, 4181, 1597, 610, 233, 89, 34, 13, 5, 2, 1, 4181, 10946, 4181, 1597, 610, 233, 89, 34, 13, 5, 2, 1, 10946
OFFSET
1,4
COMMENTS
Row sums are the odd-subscripted Fibonacci numbers (A001519).
T(n,1) = T(n,n) = fibonacci(2n-3) = A001519(n-1) for n>=2.
LINKS
E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
FORMULA
T(n,k) = fibonacci(2n-2k-1) if k<n; T(n,n)=fibonacci(2n-3).
G.f.: G(t,z) = t*z*(1-2*t*z)/(1-3*t*z+t^2*z^2)+t*z^2*(1-z)/((1-t*z)* (1-3*z+z^2)).
EXAMPLE
T(4,2)=2 because we have UUDDUUDD and UUDDUDUD, where U=(1,1) and D=(1,-1).
Triangle starts:
1;
1,1;
2,1,2;
5,2,1,5;
13,5,2,1,13;
34,13,5,2,1,34;
MAPLE
with(combinat): T:=proc(n, k) if k<n then fibonacci(2*n-2*k-1) elif n=k then fibonacci(2*n-3) else 0 fi end: for n from 1 to 13 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form
MATHEMATICA
T[n_, k_] := If[k < n, Fibonacci[2*n - 2*k - 1], Fibonacci[2*n - 3]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* G. C. Greubel, Oct 22 2017 *)
PROG
(PARI) for(n=1, 10, for(k=1, n, print1(if(k<n, fibonacci(2*n-2*k-1), fibonacci(2*n-3)), ", "))) \\ G. C. Greubel, Oct 22 2017
CROSSREFS
Cf. A001519.
Sequence in context: A337224 A090079 A165195 * A057031 A230219 A147292
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 03 2006
STATUS
approved