Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Oct 23 2017 19:48:40
%S 1,1,1,2,1,2,5,2,1,5,13,5,2,1,13,34,13,5,2,1,34,89,34,13,5,2,1,89,233,
%T 89,34,13,5,2,1,233,610,233,89,34,13,5,2,1,610,1597,610,233,89,34,13,
%U 5,2,1,1597,4181,1597,610,233,89,34,13,5,2,1,4181,10946,4181,1597,610,233,89,34,13,5,2,1,10946
%N Triangle read by rows: T(n,k) is the number of nondecreasing Dyck paths of semilength n and having abscissa of first return equal to 2k (1<=k<=n). A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing.
%C Row sums are the odd-subscripted Fibonacci numbers (A001519).
%C T(n,1) = T(n,n) = fibonacci(2n-3) = A001519(n-1) for n>=2.
%H G. C. Greubel, <a href="/A121487/b121487.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, <a href="http://dx.doi.org/10.1016/S0012-365X(97)82778-1">Nondecreasing Dyck paths and q-Fibonacci numbers</a>, Discrete Math., 170, 1997, 211-217.
%F T(n,k) = fibonacci(2n-2k-1) if k<n; T(n,n)=fibonacci(2n-3).
%F G.f.: G(t,z) = t*z*(1-2*t*z)/(1-3*t*z+t^2*z^2)+t*z^2*(1-z)/((1-t*z)* (1-3*z+z^2)).
%e T(4,2)=2 because we have UUDDUUDD and UUDDUDUD, where U=(1,1) and D=(1,-1).
%e Triangle starts:
%e 1;
%e 1,1;
%e 2,1,2;
%e 5,2,1,5;
%e 13,5,2,1,13;
%e 34,13,5,2,1,34;
%p with(combinat): T:=proc(n,k) if k<n then fibonacci(2*n-2*k-1) elif n=k then fibonacci(2*n-3) else 0 fi end: for n from 1 to 13 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
%t T[n_, k_] := If[k < n, Fibonacci[2*n - 2*k - 1], Fibonacci[2*n - 3]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* _G. C. Greubel_, Oct 22 2017 *)
%o (PARI) for(n=1,10, for(k=1,n, print1(if(k<n, fibonacci(2*n-2*k-1), fibonacci(2*n-3)), ", "))) \\ _G. C. Greubel_, Oct 22 2017
%Y Cf. A001519.
%K nonn,tabl
%O 1,4
%A _Emeric Deutsch_, Aug 03 2006