The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121485 Number of nondecreasing Dyck paths of semilength n and having no peaks at even level (n>=0). A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing. 2
1, 1, 2, 4, 8, 16, 33, 66, 136, 274, 562, 1138, 2327, 4725, 9645, 19613, 39997, 81397, 165906, 337773, 688260, 1401565, 2855432, 5815477, 11846941, 24129498, 49152840, 100116607, 203936639, 415394872, 846143795, 1723513075, 3510704795 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Column 0 of A121484.
LINKS
E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Math., 170, 1997, 211-217.
FORMULA
G.f.: z(1-z^2)(1-2z^2)/(1-z-4z^2+2z^3+4z^4-z^6).
a(n) = a(n-1)+4*a(n-2)-2*a(n-3)-4*a(n-4)+a(n-6) for n>6. - Colin Barker, Sep 11 2015
EXAMPLE
a(4)=4 because we have UDUDUDUD, UDUUUDDD, UUUDDDUD and UUUDUDDD, where U=(1,1) and D=(1,-1).
MAPLE
G:=z*(1-z^2)*(1-2*z^2)/(1-4*z^2-z+4*z^4-z^6+2*z^3): Gser:=series(G, z=0, 40): seq(coeff(Gser, z, n), n=1..37);
MATHEMATICA
LinearRecurrence[{1, 4, -2, -4, 0, 1}, {1, 1, 2, 4, 8, 16}, 40] (* Vincenzo Librandi, Sep 12 2015 *)
PROG
(PARI) Vec(z*(1-z^2)*(1-2*z^2)/(1-z-4*z^2+2*z^3+4*z^4-z^6) + O(z^60)) \\ Michel Marcus, Sep 11 2015
(Magma) I:=[1, 1, 2, 4, 8, 16]; [n le 6 select I[n] else Self(n-1)+4*Self(n-2)-2*Self(n-3)-4*Self(n-4)+Self(n-6): n in [1..40]]; // Vincenzo Librandi, Sep 12 2015
CROSSREFS
Sequence in context: A355548 A036373 A119610 * A308808 A324406 A182442
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 02 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 12:09 EDT 2024. Contains 372736 sequences. (Running on oeis4.)