login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A036373
Number of ternary rooted trees with n nodes and height at most 5.
3
1, 1, 1, 2, 4, 8, 16, 33, 63, 121, 225, 415, 749, 1344, 2365, 4129, 7106, 12104, 20354, 33883, 55706, 90628, 145729, 231801, 364555, 567206, 872727, 1328545, 2000536, 2980554, 4393287, 6407683, 9246830, 13204526, 18657905, 26088244
OFFSET
0,4
FORMULA
If T_i(z) = g.f. for ternary trees of height at most i, T_{i+1}(z)=1+z*(T_i(z)^3/6+T_i(z^2)*T_i(z)/2+T_i(z^3)/3); T_0(z) = 1.
MATHEMATICA
T[0] = {1}; T[n_] := T[n] = Module[{f, g}, f[z_] := Sum[T[n - 1][[i]]*z^(i - 1), {i, 1, Length[T[n - 1]]}]; g = 1 + z*(f[z]^3/6 + f[z^2]*f[z]/2 + f[z^3]/3); CoefficientList[g, z]]; A036373 = T[5] (* Jean-François Alcover, Jan 19 2016, after Alois P. Heinz (A036370) *)
CROSSREFS
Cf. A036370.
Sequence in context: A137181 A272698 A355548 * A119610 A121485 A308808
KEYWORD
nonn,fini,full
AUTHOR
N. J. A. Sloane, E. M. Rains (rains(AT)caltech.edu)
STATUS
approved